

Ultrafiltration and Characterization of AW-101 Supernatant and Entrained Solids

K. P. Brooks P. R. Bredt G. R. Golcar S. A. Hartley M. W. Urie J. M. Tingey K. G. Rappe L. K. Jagoda

October 1999

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately own rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Ultrafiltration and Characterization of AW-101 Supernatant and Entrained Solids

K. P. Brooks P. R. Bredt

G. R. Golcar

S. A. Hartley

M. W. Urie

J. M. Tingey

K. G. Rappe

L. K. Jagoda

October 1999

Prepared for British Nuclear Fuels Ltd., Inc. by Battelle, Richland, Washington 99352

Summary

A 0.1-µm sintered metal Mott filter was used for cross-flow filtration testing of Hanford Double Shell Tank AW-101 entrained solids. While the filtrate was being recirculated, a matrix of 14 transmembrane pressures (1.4 to 4.8 bar) and axial velocities (1 to 4.2 m/s) were investigated, each over 1 hour's time. The slurry was dewatered from 2.2 L to 1.0 L, and a second matrix of 4 transmembrane pressures (2.1 to 4.8 bar) and axial velocities (3.8 to 4.6 m/s) were investigated.

The slurry was then dead-end filtered and the solids washed three times with water. The original feed, permeate, wash solutions, and final solids were analyzed for chemical and radiochemical constituents. Slurry samples were taken before testing and after dewatering. These samples were analyzed for density, viscosity, particle size distribution, and solids concentration.

For the cross-flow filtration tests, filtrate permeabilities ranged from 0.34 to 0.67 m³/m²/day/bar. Filtrate fluxes were 1.6 m³/m²/day as compared to the design basis of 5.9 m³/m²/day. This lower than expected value may be caused by high filter-cake resistance (due to very small particles) or filter resistance (due to a low porosity filter)¹. Higher pressures are recommended for AW-101 entrained solids filtration with the filter and conditions evaluated in this work. The best performance occurred at 4.5 bar and 3.75 m/s. After dewatering the slurry from 2.2 L to 1.0 L, the filtrate permeabilities decreased to a range of 0.17 to 0.26 m³/m²/day/bar.

After the entrained solids had been washed three times with 28 mL water/g dry solids, the sodium in the wash solutions had still not decreased to below the required 60 g/kg dry entrained solids. The difficulty in removing sodium from the entrained solids is believed to be caused by slightly soluble sodium oxalate.

Results for the radiochemical analyses indicate that the entrained solids are transuranic (TRU) while the filtrate has been decontaminated from any measurable TRU and ⁹⁰Sr isotopes.

The CUF feed was Newtonian in behavior while the CUF dewatered slurry was slightly shear-thinning or pseudoplastic. Both materials had viscosities ranging from 5 to 10 cP (at shear rates $> 100 \text{ s}^{-1}$) and slurry densities of 1.3 g/mL.

¹After operation, it was determined that this filter was designed for gaseous rather than liquid applications. Gas filters have a lower porosity than liquid filters and offer a greater resistance to liquid flow.

Glossary

μm Micron

AES Atomic emission spectroscopy

BNFL British Nuclear Fuels, Ltd., Inc.

cP centipoise

CUF Cells Unit Filter

DI Deionized

DOE U.S. Department of Energy

g gram

GEA Gamma energy analysis

HLW High level waste

IC Ion chromatography

ICP Inductively coupled plasma

L Liter

LAW Low activity waste

MS Mass spectrometry

MSE Mean squared error

psi Pounds per square inch

psid Pounds per square inch differential

RPP-WTP River Protection Project Waste Treatment Plant

SRTC Savannah River Technology Center

TIC Total inorganic carbon

TMP Transmembrane Pressure

TOC Total organic carbon

TRU Transuranic

Vol% Volume percent

Wt% Weight percent

Contents

1.0 Introduction	1.1
2.0 Experimental Approach	2.1
2.1 Test Apparatus	2.1
2.2 Test Material Preparation	2.5
2.3 Cross Flow Filtration Experiments	
2.4 Dead-End Filtration Experiments	2.12
2.5 Sample Analysis	
3.0 Experimental Results	3.1
3.1 Cross Flow Filtration Results	3.1
3.1.1 Testing with AW-101	3.1
3.1.2 Statistical Analysis	3.4
3.1.3 Water, Simulant, and Nitric Acid Tests	3.8
4.0 Chemical and Radiochemical Properties	
5.0 Physical Properties Testing and Results	5.1
5.1 Rheological and Flow Properties	5.3
5.2 AW-101 Slurry Particle-Size Distribution Measurements	5.4
6.0 Conclusions	6.1
7.0 References	7.1

Figures

Figure 2.1.	Process Flow Diagram of the Cross Flow Filtration System (CUF)
Figure 2.2.	Photograph of the Cross Flow Filtration System (CUF) Before Installation in the Hot Cell . 2.5
Figure 2.3.	Photograph of As-Received AW-101 Tank Supernatant
Figure 2.4.	Sample Flow Diagram for the AW-101 Before Cross Flow Filtration Testing2.7
Figure 2.5.	Filtration Test Experimental Steps
Figure 2.6.	Experimental Conditions and Order Used in Testing the Diluted AW-101 Slurry with the CUF
Figure 2.7.	Experimental Conditions and Order Used in Testing the Dewatered AW-101 Slurry with the CUF
Figure 3.1.	Filtrate Flux as a Function of Time for Condition 1 with Diluted AW-101 Slurry in the CUF
Figure 3.2.	Initial, Average and Final Filtrate Flux for each of Conditions in the 14 Point Matrix with the Diluted AW-101 Slurry
Figure 3.3.	Results of the 14-Point Matrix as a Function of Transmembrane Pressure and Velocity3.3
Figure 3.4.	Filtrate Flux as a Function of Pressure at Constant Velocity for the Diluted AW-101 Slurry
Figure 3.5.	Filtrate Flux Versus Time Comparison Between the Recycle Mode (Condition 10) and the De-Watering Mode
Figure 3.6.	Filtrate Flux as a Function of Pressure for the De-Watered AW-101 Slurry
Figure 3.7.	Comparison of Filtrate Flux Between the Diluted and De-Watered AW-101 Slurry as a Function of Pressure
Figure 3.8.	Residuals as a Function of Run Order from the Statistical Model Using Pressure as the only Experimental Factor
Figure 3.9.	Clean Water Flux Test Results Before and After Testing with AW-101
Figure 5.1.	Rheogram of Shear Stress as a Function of Shear Rate for the Diluted and De-Watered AW-101 Slurries
Figure 5.2.	Rheogram of Viscosity as a Function of Shear Rate for the Diluted and De-Watered AW-101 Slurries
Figure 5.3.	Cumulative Under-Size Percentage Distribution for AW-101 Using the Microtrac X-1005.8
Figure 5.4.	Cumulative Under-Size Percentage Distribution of AW-101 using the Microtrac UPA5.9
Figure 5.5.	Histogram of AW-101 using the Microtrac X-100
Figure 5.6.	Histogram of AW-101 Using the Microtrac UPA

Tables

Table 2.1.	Test Conditions for Low Solids Matrix
Table 2.2.	Test Conditions for High Solids Matrix
Table 3.1.	Measurement Error Evaluation
Table 4.1.	Concentration of Components in the Initial Centrifuged Supernatant and Filtered Permeate from the CUF4.2
Table 4.2.	Concentration of Non-Radioactive Components in the Initial and Final Entrained Solids4.3
Table 4.3.	Concentration of Radioactive Components in the Composite Wash Solution and the Initial and Final Entrained Solids
Table 4.4.	Composition of the Entrained Solids Wash Solutions, Individually and as a Composite4.5
Table 5.1.	Density Measurement for Samples of AW-101 Diluted Slurry Feed and Dewatered Slurry5.2
Table 5.2.	Wt% and Vol% Solids Data for AW-101 Diluted Feed and Dewatered Slurry Samples5.3
Table 5.3.	Results of Wt% Residual Solids and Undissolved Solids Calculation Following Drying at 105°C for 24 Hours

1.0 Introduction

The River Protection Project Waste Treatment Plant (RPP-WTP) (1996) flow sheet uses cross-flow filtration as the solid/liquid separation technique. Unlike traditional dead-end filtration, which has a declining rate caused by the growth of a filter cake on the surface of the filter medium, in cross-flow filtration, the filter cake is swept away by the fluid flowing across it. This filtration method is especially beneficial when there are very fine particles and when system simplicity is required.

One of the applications of cross-flow filtration is to remove the entrained solids from Envelope A supernatants¹ retrieved from the tanks. The filtration should remove sufficient solids to prevent plugging of the ion exchange column downstream and to ensure that insoluble ⁹⁰Sr and transuranic isotopes are removed. These solids are then to be concentrated and returned to the U.S. Department of Energy (DOE). The RPP-WTP Privatization Contract (1996) specifies certain isotopic, chemical, and physical limits for the entrained solids returning to the DOE double-shell tanks.

During Phase 1A, the Savannah River Technology Center (SRTC) tested an entrained solids simulated Envelope A material at 0.15 wt% solids. The SRTC cross-flow filtration system used a 0.5-µm Mott sintered metal filter. Filter permeabilities ranging from 2.7 to 56 m³/m²/day/bar (0.0032 to 0.066 gpm/ft²/psi) were obtained over a transmembrane pressure drop range of 0.68 to 2.2 bar (10 to 31 psi) (Nash and Siler 1997).

The objective of this work was to test cross-flow filtration using actual Envelope A Hanford tank waste. Similar to the Phase 1A study, we evaluated the permeability of an Envelope A feed through a single element filter as a function of transmembrane pressure, axial velocity, solids concentration, and time. In addition, the efficiency of back pulse and chemical cleaning on the filter performance was evaluated. The chemical and radiochemical composition of the filtrate and solids was measured to determine efficiency of the filtration process.

This report describes the test apparatus, the experimental approach, the results of the tests, and the chemical and radiochemical analysis for supernatants taken from Hanford Tank AW-101². This report also provides a means of transmitting to British Nuclear Fuels, Limited (BNFL) the completed test instruction and raw filtration and analytical data.

¹ Envelope A refers to a volume of tank waste that will be provided to the Privatization contractor to process that falls within a certain composition range. Envelope A encompasses a large fraction of the double shell tank waste.

² The results presented in this report are based on work conducted under Test Plan TP-29953-004, test instructions TP-29953-012, -021, -022, and -024, and Procedure TP-29953-020. Some data are recorded in Laboratory Record Book (LRB)# 13745.

2.0 Experimental Approach

2.1 Test Apparatus

The cross-flow filtration apparatus had the following specifications:

- Mott sintered SS metal filter rated at 0.1 μm; 24-in. length and 3/8-in. diameter (total area 0.0182 m²)
- Re-circulation flow with a maximum linear crossflow velocity of 5 m/s along the axis of the filter
- Maximum transmembrane pressures of 5.5 bar (80 psid)
- Temperature control of 25 ± 5°C during operation.

The system was fabricated based on modifications of the Cells Unit Filter (CUF) system designed by SRTC. A process flow diagram is shown in Figure 2.1, and a photograph is shown in Figure 2.2. The entire system has a maximum operating volume of 2500 mL and a minimum volume of 800 to 1000 mL. The system is connected with stainless steel tubing and Swagelok fittings. The feed solution is introduced into the slurry reservoir. An air driven Oberdorfer progressive cavity pump provides flow through a magnetic flow meter and into the Mott filter rated at 0.1 μ m. The axial velocity and transmembrane pressure of the filter are controlled by adjusting the pump speed (via the air-pressure supply to the air motor) and the throttle valve (V1). Filtrate passes through the Mott filter and is reconstituted with the slurry in the slurry reservoir. The filtrate is measured by means of a fill and drain graduated cylinder or a rotameter (if the flows are too high to be measured by the graduated cylinder).

The filtrate can be recycled to or redirected from the slurry reservoir using V7. The former approach, i.e., recirculation of the filtrate, ensures that the solids concentration and fluid volume remain relatively constant during the course of an experiment. The latter approach, i.e., redirecting the fluid from the slurry reservoir, enables periodic sampling of the filtrate or increasing the solids concentration in the reservoir for higher solids-loading tests. The slurry can be sampled at run conditions using a two-valve system (V2 & V10). One valve is opened at a time to prevent loss of material during sampling. The high velocities during system operation will provide high enough mixing to ensure that a homogeneous and representative sample of slurry is collected.

The slurry temperature is measured both in the slurry reservoir and in-line. A 1-kW chiller pumps coolant through heat-exchanger jackets around the tank and around the tubing between the flow meter and filter.

The filter is back pulsed by opening the toggle valve (V3) and allowing the back-pulse chamber to be filled half full with filtrate. The toggle valve is then closed, and the back-pulse chamber is pressurized with air. Once charged, the toggle valve is then opened, allowing the pressurized filtrate to back pulse the filter element. The system is drained at valves V2 and V9. Air from the back-pulse chamber is used to force the liquid from the filter out of the system. However, some liquid/slurry, typically 100 to 200 g, still remains in the system after draining and cannot be removed without disassembling the system.

¹ After operation, it was determined that this filter was designed for gaseous rather than liquid applications. Gas filters have a lower porosity than liquid filters and offer a greater resistance to liquid flow.

Figure 2.2. Photograph of the Cross Flow Filtration System (CUF) Before Installation in the Hot Cell

2.2 Test Material Preparation

We received approximately 3400 g of AW-101 material from the 222-S laboratory for testing in 29 containers. These containers were composited, and samples were removed for chemical, radiochemical, and organics analysis (See Urie et al. 1999). The original feed was determined to be approximately 11 M Na. Mixing of this as-received AW-101 waste resulted in rapid settling of the solids from the supernatant. The supernatant was clear yellow-green in color. The solids were dark brown in color (See Figure 2.3). These solids contained some large crystals.

Following directions from Test Plan 29953-6, we diluted the material to 6.5 M sodium and then distributed approximately 450 mL for analysis and laboratory testing. To ensure that the solids content of the sample was representative of the diluted slurry feed, the diluted slurry feed was stirred using an overhead mixer while the samples were collected. This material was analyzed for physical properties as well as chemical and radiochemical properties. Testing with the diluted AW-101 material included ion exchange batch contacts, solubility versus temperature measurements, and caustic leach testing. The remaining 2880 g of diluted AW-101 was used for the testing in the cross-flow filtration work. Figure 2.4 shows the sample pathway before AW-101 material was placed inside the CUF.

Figure 2.3. Photograph of As-Received AW-101 Tank Supernatant

Figure 2.4. Sample Flow Diagram for the AW-101 Before Cross-Flow Filtration Testing

2.3 Cross-Flow Filtration Experiments

The experiments performed in this study are described in Test Plan 29953-4. The completed test instruction for this work, TP-29953-022, is contained in Appendix A. The radioactive filtration tests were conducted in the 325 Building A-cell using the as-diluted AW-101 material. A flow sheet of the testing is shown in Figure 2.5, and the various experimental steps are discussed below.

Figure 2.5. Filtration Test Experimental Steps

In all tests, the slurry temperature was maintained at 25 ± 3 °C. The filtrate flux values were corrected for these temperature variations using the equation provided by BNFL:

$$Flux_{25C} = Flux_T e^{\left(2500 \cdot \left[\frac{1}{273 + T} - \frac{1}{298}\right]\right)}$$
 (2.1)

where $Flux_T$ is the calculated flux at the measured temperature, T is the experimentally measured temperature, and $Flux_{25C}$ is the normalized temperature at 25°C.

During each test, filtrate flux, re-circulation flows, module inlet and outlet pressure, and slurry temperature were monitored every 10 minutes. Each test condition was run for 60 minutes. Upon completion of each test condition, the filter was back pulsed twice and a new condition set.

In the first set of experiments, we determined the flux of clean water through the membrane at three different transmembrane pressure drops of 2, 3.7, and 4.8 bar (30, 55, and 70 psid). The axial velocities for these tests were 1, 4.6, and 3.7 m/s, respectively. Each experiment lasted 20 minutes. The clean water flux from these tests provided a baseline to evaluate the cleaning efficiency of nitric acid wash. After testing, the water was drained, but approximately 150 g of water remained in the CUF. This water cannot be removed without disassembling the equipment.

After testing the system with water, approximately 2200 mL of diluted AW-101 was then placed into the CUF slurry reservoir. Using the diluted AW-101 material, the permeate fluxes were determined at 14 conditions of axial velocities and transmembrane pressures. The test conditions for the 14 different experiments are shown in Table 2.1 and Figure 2.6. The purpose of theses tests was to determine the optimum permeate flux conditions for the dilute AW-101 slurry. During this test matrix, the filtrate was recycled back into the slurry reservoir to hold the solids concentration and volume relatively constant. The matrix consists of two testing regimes, one at low velocities and pressures and the other at higher velocities and pressures. A 5-point matrix around a center-point at 2 bar and 2 m/s tested the lower conditions of transmembrane pressure (TMP) (1.38 to 2.75 bar) and velocity (1 m/s to 2.8 m/s). A 5-point matrix around a center-point at 3.8 bar and 3.7 m/s tests the higher TMP and velocities of (2.75 to 4.82 bar) and (2.8 m/s to 4.6 m/s). The first, seventh, and thirteenth conditions were all to be performed at the lower center-point. The second, eighth, and fourteenth conditions were all to be performed at the upper center-point. This duplication of conditions allowed us to determine how the filtrate flux is changing versus time (due to filter fouling and changes in the particle characteristics).

After testing this 14-point matrix, we selected the condition with the highest filtrate flux for the de-watering operation. The condition selected was 4.8 bar and 3.5 m/s axial velocity. The slurry concentrated until approximately 1200 mL of filtrate had been removed. Approximately 1 L of slurry remained in the system. Following the dewatering step, samples of the collected filtrate, the dewatered slurry, and final permeate were taken. The filtrate samples were analyzed for chemical and radiochemical constituents, while the slurry samples were analyzed for viscosity, solids loading, and particle-size distribution.

Table 2.1.	Test	Conditions	for Low	Solids	Matrix

Test #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Axial Velocity (m/s)	2.1	3.7	2.4	1.0	2.0	2.8	2.0	3.7	3.7	3.7	2.8	4.2	2.0	3.7	
TMP (bar)	2.1	3.9	2.9	2.0	1.3	2.0	2.0	3.7	2.7	4.4	3.7	3.7	2.1	3.9	

Figure 2.6. Experimental Conditions and Order Used in Testing the Diluted AW-101 Slurry with the CUF

A second test matrix was then performed at the higher solids loading. Table 2.2 and Figure 2.7 show the conditions and run order for this matrix. Although the pump was able to reach 4.8 bar at 3.5 m/s during dewatering, during the second test matrix, the pump was not able to reach all the intended target conditions. The reason for this difference is not clear. The maximum pressure obtained at 3.7 m/s axial velocity was 3.4 bar (50 psid). To reach 4.8 bar (70 psid) for Condition 4, the axial velocity was reduced to 2.8 m/s. Similarly, the maximum pressure obtained for Condition 5 at a set axial velocity of 4.6 m/s was 2.2 bar (32 psid).

Table 2.2. Test Conditions for High Solids Matrix

Test #	1	2	3	4
Axial Velocity (m/s)	3.7	3.7	2.8	4.6
TMP (bar)	2.6	3.4	4.8	2.2

Figure 2.7. Experimental Conditions and Order Used in Testing the Dewatered AW-101 Slurry with the CUF

Following this matrix, the slurry was drained from the CUF. Because of the limitations in sample size, no further dewatering was performed as was originally specified in Test Plan 29953-4. After draining, the CUF was rinsed three times with distilled water to bring the pH back to neutral. One liter of 1 M HNO₃ was then run through the CUF for approximately 30 minutes; then the pump was stopped, and the acid was allowed to sit in the CUF overnight. The acid was then drained, and the CUF was rinsed with distilled water four times to bring the pH back to neutral. During the acid wash and subsequent water flushes, the filtrate flux was measured after 10 minutes of operation. After the membrane had been thoroughly cleaned, water fluxes through the membrane were measured once again at 2, 3.7, and 4.8 bar (30, 55, and 70 psid) and 1, 4.6, and 3.7 m/s, respectively. These pressure drops and velocities were the same as those performed with clean water at the beginning of the study. We should be able to compare the water fluxes at the beginning and the end of the study and determine the cleaning efficiency.

2.4 Dead-End Filtration Experiments

The AW-101 slurry that was drained from the CUF was dead-end filtered with a 0.45-µm nylon filter. The filtering was accomplished within approximately 20 minutes. This filtered material, along with the permeate collected during de-watering, was transferred to the ion exchange work. The filtered solids were washed and filtered three times each with 100 mL of distilled water. Samples of the water from each of the three individual washes as well as a composite of all three washes were taken for chemical and radiochemical analysis.

2.5 Sample Analysis

The chemical and radiochemical analyses that were performed on the samples that were collected are shown in Table 2.3. A complete set of chemical and radiochemical analyses was performed on the material taken during the de-watering step, the permeate taken following the dewatering step, and the composite of the three washing solutions. This analysis set included total organic carbon (TOC) and total inorganic carbon (TIC), ion chromatography (IC) (soluble anions), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) (metals), gamma energy analysis (GEA) (137Cs, 155Eu, 156Eu, 241Am), strontium chemical separation followed by beta counting (90Sr), inductively coupled plasma-mass spectrometry (ICP-MS) (for 99Tc only), and total alpha. The entrained solids wash solutions were only analyzed for metals with ICP-AES, specifically for the soluble metals such as sodium. The washed solids received the same set of analyses as the permeates. The solids were analyzed with ICP-AES, both with a KOH fusion sample and an acid-digested sample (to obtain complete dissolution as well as measure the K and Ni concentration).

Table 2.3 Analysis Performed on AW-101 Material During Entrained Solids Testing

Permeate and Composite Wash	Wash Solution	Washed Solids
TOC/TIC	Acid Digest then	TOC/TIC
IC	- ICP-AES	IC
Acid Digest then		KOH Fusion then
- GEA		- GEA
- ⁹⁰ Sr		- ⁹⁰ Sr
- ICP-MS: 99Tc		- ICP-MS: 99Tc
- Total Alpha		- Total Alpha
101 11110		- ICP-AES
		Acid Digest then
		- ICP-AES

and the same of the scaling process of the second contract the sec

3.0 Experimental Results

3.1 Cross Flow Filtration Results

3.1.1 Testing with AW-101

The as-diluted AW-101 material filtered relatively slowly with an average filtrate flux of 1.25 m³/m²/day (0.0213 gpm/ft²) as compared to the BNFL design goal of 5.9 m³/m²/day (0.1 gpm/ft²). The well mixed slurry was light brown in color while the filtrate appeared a clear yellowish green in color under the hot cell lights. The material did not froth or foam during testing. The slurry reservoir remained fairly well mixed and homogeneous as indicated by the significant movement of the liquid surface in the slurry reservoir.

A sample filtrate fllowrate curve is shown in Figure 3.1. Although the filtrate flowrate was taken every 10 minutes during the hour of each test condition, only the data taken after the first 20 minutes of the run were averaged to obtain an average flux for the test condition. We did this to reduce the effect of the initial high values while still providing sufficient data to create a reasonable average of the equilibrium flux number.

Figure 3.1. Filtrate Flowrate as a Function of Time for Condition 1 with Diluted AW-101 Slurry in the CUF

As mentioned in the previous section, the system was backpulsed twice between each condition. For the first test matrix, these back pulses were performed by pressurizing approximately 50 mL of permeate to 3.43 bar (50 psi) and forcing this liquid back through the filter. A comparison between the initial, average, and final filtrate flux is shown graphically in Figure 3.2. For this first matrix, there is only a 23% average increase in flux due to the back pulsing. For the second test matrix, 50 mL of permeate was pressurized to 5.5 bar (80 psi). In this case, there was a 30% average increase in flux due to back pulsing, although the differences between the two matrices are not statistically significant.

Figure 3.2. Initial, Average, and Final Filtrate Flux for Each of Conditions in the 14 Point Matrix with the Diluted AW-101 Slurry

The filtrate flux results are shown in Figure 3.3 as a function of pressure and velocity. The filtrate values range from a minimum of 0.9 m³/m²/day (0.0153 gpm/ft²) at 1.4 bar (20 psid) to a maximum of 1.6 m³/m²/day (0.0273 gpm/ft²) at 4.5 bar (65 psid). For this filter and range of test conditions, the higher pressures increase the filtrate flux while the velocity does not appear to have a strong effect on the filtrate flux. When the data points at constant velocity are plotted as a function of pressure, a nearly linear relationship appears as shown in Figure 3.4.

The permeability is the filtrate flux divided by the transmembrane pressure. For the low solids-loading matrix, permeabilities range from 0.34 to 0.67 m³/m²/day/bar (0.0004 to 0.0008 gpm/ft²/psi). The lower permeabilities are associated with higher pressures, while the higher permeabilities are associated with the lower pressures.

Figure 3.3. Results of the 14 Point Matrix as a Function of Transmembrane Pressure and Velocity. Values next to the points indicate the filtrate flux in m³/m²/day.

Figure 3.4. Filtrate Flux as a Function of Pressure at Constant Velocity for the Diluted AW-101 Slurry

The solution was dewatered from 2.2 L to 1 L using the optimum conditions of the 14-point matrix. A transmembrane pressure of 4.8 bar (70 psid) and 3.5 m/s axial velocity was selected for this process. During the dewatering process, which required approximately 53 minutes to perform, the filtrate flux averaged 1.51 m³/m²/day (0.0257 gpm/ft²). A plot of the flux during this dewatering process as a function of time is compared to similar conditions during the recycle mode in Figure 3.5. The filtrate flux is consistently lower during the dewatering mode than during the recycle mode indicating possible filter fouling.

The second test matrix was performed with approximately 1 L of slurry as compared to 2.2 L for the first test matrix. Thus the solids concentration should be increased by 2.2 times. The filtrate-flux results of these tests are shown in Figure 3.6. These results are 52% lower than those at similar conditions with the low solids loading. The average permeability is between 0.17 and 0.26 m³/m²/day/bar (0.0002 and 0.0003 gpm/ft²/psi). A comparison of the two matrices as a function of pressure is shown in Figure 3.7.

3.1.2 Statistical Analysis

The goal of the statistical analysis is to determine the error associated with these tests and to develop a model that best predicts the average flux for AW-101 over the range of conditions studied.

Figure 3.5. Filtrate Flux Versus Time Comparison Between the Recycle Mode (Condition 10) and the De-Watering Mode

Figure 3.6. Filtrate Flux as a Function of Pressure for the De-Watered AW-101 Slurry

Figure 3.7. Comparison of Filtrate Flux Between the Diluted and De-Watered AW-101 Slurry as a Function of Pressure

By comparing how well each of the filtrate-flux measurements are to be repeated, the error of the measurement technique can be estimated. For each test condition, seven measurements were taken at the same point over a period of 1 hour. If it is assumed that the flux change with respect to time after the first 20 minutes is considered to be constant, the the error can be calculated. While it is true that the flux does continue to decrease even after the first 20 minutes, the values calculated in this way provide an upper bound on the possible error in the measurements. The results of the error calculation are provided in Table 3.1.

Table 3.1. Measurement Error Evaluation

Conditions	Filtrate Flux Error (m ³ /m ² /day)
Low solids 13-point matrix ^a	0.0208
6 low P and v points ^a	0.0135
7 high P and v points	0.0272
High solids 4 point matrix	0.0102

^aData from condition 13 were not included in the error calculation as these data were considered suspect.

A statistical model can be used to understand the important factors, predict filtrate flux performance, and eliminate effects particular to the CUF test and equipment that would not be seen in actual operation (i.e., run number). Three possible factors were evaluated: velocity, pressure, time (run order), or any combination of those variables. The following assumptions are used for fitting these models:

- The fixed components of the errors are negligible. That is, the errors have a zero mean.
- The errors are mutually uncorrelated, or their covariances are zero. This means that the value of one error does not depend on or help determine the value of any other error.
- Though generally unknown, the variances of the errors are equal.
- The errors are normally distributed.

Based on the strong influence of pressure seen in Figure 3.8, a simple model was employed first using pressure as a single predictor for the average flux. The simple model is

Flux = Pressure + error
$$(3.1)$$

where error is normally and independently distributed with the zero mean and common variance σ^2 .

The model was a good fit, yielding a high R^2 of 0.8557 and a low mean squared error (MSE) of 0.00613. For a model to be considered a good prediction model, it is desired, among other things, that the R^2 should be as close to 1 as possible, while at the same time, the MSE should be as low as possible. From these criteria, this "first cut" model appears to be a good fit.

¹ The calculation is done by subtracting the mean of the data points taken at the same location (replicates) from each raw measurement, squaring those differences, adding them up, and dividing that total by the number of degrees of freedom.

Figure 3.8. Residuals as a Function of Run Order from the Statistical Model
Using Pressure as the Only Experimental Factor

As can be seen from Figure 3.8, the model yields residuals that, when plotted against the run order, look quadratic. The plot of the residuals gradually increases as the run order increases in the first half of the plot, while the residuals gradually decrease as the run order increases during the second half of the plot, yielding an overall quadratic effect. From this plot, it can be expected that the run order will have a significant impact to the fit of the model, and that impact will be quadratic in nature. It was thus included in a more extensive model.

A selection process was employed to determine the best model across the data for the low solids loading matrix (13 points), and the following model was chosen:

Flux =
$$0.544 + 0.247$$
 (Pressure) -0.056 (Velocity) $+0.063$ (Run) -0.004 (Run²) (3.2)

This model yielded an R²= 0.9678, and has an MSE= 0.0018. In this case, velocity has a negative relationship and the pressure a positive relationship with the average flux. The inverse velocity relationship seen here is surprising, but has occurred with previous CUF studies using C-106 sludge at 0.05 wt% solids loading (see Geeting and Reynolds 1997). This trend is believed to result from higher velocities pulling larger particles away from the filter surface, thus allowing the smaller particles to form a more impermeable cake on the filter surface.

The run number has a positive relationship for the first 7 points and then a negative relationship for the remaining points. Interestingly, the first 7 points correspond primarily to the low pressure and velocity matrix, and the following 7 points correspond to the high pressure and velocity matrix. The consistent reduction in filter permeability at the high pressure and velocity suggests possible particle deagglomeration or filter fouling not found at the lower conditions. The particle de-agglomeration would

result in smaller particles that would form a more impermeable cake on the filter surface. The filter fouling could be due to higher pressures forcing small particles into the filter that cannot be removed by backpulsing. Recent studies indicate the CUF itself produces fines, especially at higher flows and pressures, that could impact filtration results.

Because of the small feed volumes used by the CUF and the long and rigorous testing matrix, the feed is subjected to more shear than would occur in a plant. During the course of a run, the feed makes approximately 6800 cycles through the CUF, which is significantly more than envisioned for a full-scale cross-flow filtration system. Furthermore, fines associated with the CUF pumping would also concentrate to a greater extent than in full-scale operation. If the negative relationship of run number is associated with the CUF operation using the model, this effect can be removed for plant-sizing calculations.

3.1.3 Water, Simulant, and Nitric Acid Tests

A summary of the solutions studied and the filtrate fluxes produced in the cross-flow filter are summarized in Table 3.2. These tests are also described in more detail below.

Before the CUF system was installed in the cell, it was cold tested outside the cell to ensure proper operation, measure filtrate fluxes, and validate the operating procedure. For these tests, the entire 14-point matrix was tested with 5 wt% kaolin clay in deionized (DI) water. Each condition was evaluated for 1 hour. As with the actual AW-101 material, the highest fluxes occurred at the highest pressures. Fluxes ranged from 2.3 to 10.3 m³/m²/day (0.039 to 0.175 gpm/ft²). However, unlike the actual AW-101 testing, increasing the axial velocity did positively impact the filtrate flux, especially at lower velocities (between 1 to 2 m/s).

Table 3.2. Summary of Filtrate Flux Results for both Radioactive and Non-Radioactive Tests

Filtrate Flux (m³/m²/day)

	Transmembrane Pressure (bar)					
Solution Tested	2.0	3.7	4.9			
Kaolin Clay/Water	5.1	9.4	10.3			
AW-101 Simulant	nm	1.8	nm			
Nitric Acid	nm	nm	nm			
Clean Water	3.9	7.9	10.4			
AW-101 Actual	1.1	1.4	16			

nm

4.8

44.0

4.0

15.0

3.8

nm = not measured

Nitric Acid

Clean Water

After running the CUF with kaolin clay, a simulated 5 M chemical simulant of AW-101 was tested in the CUF. The recipe for this simulant is found in Appendix D. Only a transmembrane pressure of 3.8 bar (55 psid) was tested with an axial velocity of 3.7 m/s. The average from 20 to 60 minutes of operation was 1.80 m³/m²/day (0.031 gpm/ft²). This result compares very favorably to the average taken at 3.8 bar (55 psid) with the actual AW-101 of 1.43 m³/m²/day (0.0244 gpm/ft²).

After running the AW-101 simulant, the system was rinsed several times with filtered DI water and then soaked overnight with 1 M HNO₃. The filtrate flux was quite high during this nitric acid

cleaning, but was not measured. The system was rinsed with DI water, installed into the hot cell, and tested with water. The actual AW-101 test was then performed.

After the test with actual AW-101, the system was cleaned with 1 L of 1 M HNO₃. Once again, the filtrate flux was very high. The filtrate flux was measured this time at 2.1 and 5.0 bar (31 and 73 psi) transmembrane pressure. The fluxes achieved were 15 and 44 m³/m²/day (0.256 and 0.75 gpm/ft²), respectively. These values are considerably higher than those seen either before or after actual waste processing when measured with clean water.

Before and after the actual AW-101 test, once the CUF was reassembled in the cell, clean-water flux measurements were performed. Three pressures were tested, each for 20 minutes: 2.0, 3.7, and 4.9 bar (30, 55, and 70 psi) and 1.0, 4.6, and 3.8 m/s, respectively. The results of these two tests are shown in Figure 3.9. The filtrate fluxes for initial and final conditions at 2 bar were nearly identical. However, the filtrate fluxes for the final conditions at TMP 3.7 and 4.9 bar are much lower than the filtrate fluxes for the initial conditions. The fact that the flux was identical at low pressures and velocities, but not at higher pressures and velocities, seemed to indicate that filter fouling is occurring during the course of the test rather than being residual from incomplete cleaning. More recent experiments with the CUF have shown that the progressive cavity pump did indeed produce particulate matter that caused a reduction in filtrate flux, especially at high axial velocity and transmembrane pressure.

Figure 3.9. Clean Water Flux Test Results Before and After Testing with AW-101 (filter was cleaned with 1M HNO₃ before each clean-water flux test.)

4.0 Chemical and Radiochemical Properties

Nine distinct samples were analyzed for their chemical and radiochemical properties. These samples are described below. After the as-received AW-101 material was diluted to 6.5 M Na, 68 mL was submitted for analysis (See Figure 2.4). This material was centrifuged and the solids and liquids analyzed separately. These analyses were not performed as part of this study, but are averaged values taken from Urie et al. (1999). After performing the 14-point matrix in the cross-flow filter, the solution was dewatered. A sample of the composited permeate and a sample of the final permeate at the end of dewatering were taken and submitted for analysis (see Figure 2.5). At the completion of the crossflow filtration experiments, the CUF was drained, and the solids were washed three times with water in a deadend filter. Each of these washes, the solids remaining, and a composite of the wash water were also submitted for analysis.

The results of these analyses are shown in Tables 4.1 through 4.4. As seen in Table 4.1, there are very few differences between the initial centrifuged supernatant, average permeate, and final permeate analyte concentrations. The uncertainty in the analytical results makes differences between the filtered and centrifuged solutions difficult to see. There does appear to be a decrease in the concentration from the initial centrifuged supernatant to the crossflow filtration permeate. Approximately 7% of the decrease is due to dilution with the 150 mL of DI water left in the CUF after clean water testing.

As seen in Table 4.1, most radionuclides are below the detection level. The high concentration of cesium in the supernatant prevents a lower detection level for these minor radiochemical constituents. Thus, changes in concentration of total alpha, ⁹⁰Sr, and ²⁴¹Am, which would normally be removed by solid/liquid separation in alkaline solutions, cannot be detected.

Table 4.2 presents the concentrations of the non-radioactive components of the initial centrifuged and the final damp solids collected on a filter. This filter contained 5.5 g of wet solids drained from AW-101. A small fraction of these solids was dried and found to be 49% water. The final damp solids contain four major components, which are Si, Al, Na, and U. By comparing the concentrations of the initial centrifuged solids and the final washed solids, we can see the components that may have been concentrated in the supernatant or in the solids. Based on the results in Table 4.2, components that are neither concentrated nor diluted more than would be expected due to the removal of the water and soluble components during washing and filtration appear to have a ratio of 10 to 11. Iron and silicon have values higher than 11, indicating that they may not be separated from the supernatant by centrifugation, but may have been removed with filtration. K, Na, P, and several of the anions have values considerably lower than 11. These soluble materials were probably removed from the solids during the wash steps.

Similar to Table 4.2, Table 4.3 presents the concentrations of the radioactive components of the initial centrifuged and the final damp solids. It also provides data on the composite wash solution composition. Similar to the K, Na, and P, cesium was removed from the solids during washing; the ratio of cesium in the initial centrifuged solids to the final washed solids is considerably less than 10 to 11. The alpha emitters and ⁹⁰Sr, in contrast, were not removed.

The washed solids contain $5.8-\mu$ Ci/g total alpha and $2.8-\mu$ Ci/g 241 Am. At these concentrations, the solids would be considered transuranic, based on the NRC Class C limit of > 100-n Ci/g and would require disposal with the HLW stream rather than the LAW stream (10 CFR 61). Similar to the alpha isotopes, the strontium concentrated in the solids while cesium and technetium did not.

Table 4.1. Concentration of Components in the Initial Centrifuged Supernatant and Filtered Permeate from the CUF

Analyte	Initial Centrifuged Supernatant Conc., µg/mL	Average Permeate Conc., µg/mL	Final Permeate Conc., µg/mL
Al	16350	15200	15600
Ba	<1	< 1	< 1
Ca	< 32	9	9
Cd	< 2	2	2
Co	< 6	< 6	< 6
Cr	56	54	55
Cu	< 3	5.4	5.7
Fe	5	10	10
K	23000	21100	21750
La	< 6	< 6	< 6
Mg	< 13	< 13	< 13
Mn	< 6	< 6	< 6
Mo	< 6	< 6	< 6
Na	148500	139000	135500
Nd	< 13	< 13	< 13
Ni	4.8	5.2	5.3
P	323	302	306
Pb	41	36	35
Si	130	84	130
Ti	< 3	< 3	< 3
Zr	8	6.1	6.0
Zn	14	7.3	7.5
TIC	2155	1780	1882
TOC	1560	1750	1955
Cl	3450	3300	3400
F	845	1200	1300
NO ₃	128000	112000	112500
NO ₂	65100	56500	56550
SO4 ⁻²	1900	1300	1350
PO4 ⁻³	2050	910	1155
$C_2O_4^{2-}$	< 790	520	515
Component	μCi/g	μCi/g	μCi/g
Total Alpha	< 8.E-03	< 7.E-04	< 8.E-04
90Sr	< 4.E-01	< 3.E-01	< 3.E-01
⁹⁹ Tc	5 (μg/g)	$5.1 (\mu g/g)$	5.3 (μg/g)
¹³⁷ Cs	1.8E+02	1.8E+02	1.7E+02
134Cs	4.E-02	4.E-02	3.E-02
⁶⁰ Co	< 8.E-03	< 2.E-03	< 2.E-03
¹⁵⁴ Eu	< 3.E-02	< 1.E-02	< 1.E-02
¹⁵⁵ Eu	< 3.E-01	< 1.E-01	< 1.E-01
²⁴¹ Am	< 3.E-01	< 1.E-01	< 1.E-01

Table 4.2. Concentration of Non-Radioactive Components in the Initial and Final Entrained Solids

Analyte	Initial Centrifuged Solids Conc., µg/g	Damp Solids Conc., µg/g	Ratio: Damp Solids Initial Solids
Al	14500	58833	4.1
Ba	25	275	11.0
Ca	1700	13167	7.7
Cd	34.5	376	10.9
Co	< 44	62	N/A ⁺
Cr	1620	15633	9.7
Cu	< 23	217	N/A
Fe	1390	23900	17.2
K	17200	1160	0.1
La	28	304	10.9
Mg	314	3403	10.8
Mn	1415	14400	10.2
Mo	< 8	27	N/A
Na	127500	56567	0.4
Nd	29	340	11.7
Ni	215	2093	9.7
P	501	277	0.6
Pb	120	1150	9.6
Si	2200	62600	28.5
Ti	8	86	11.3
U	5400	54200	10.0
Zr	351	3650	10.4
Zn	16	160	10.0
TIC	27500	6306	0.2
TOC	20100	16400	0.8
CI	2700	< 120	N/A
F	1600	< 120	N/A
NO ₃	80900	4800	0.1
NO ₂ -	41500	407	0.0
SO4 ⁻²	< 2300	447	N/A
PO4 ⁻³	< 2300	2517	N/A
$C_2O_4^{2-}$	42000	6300	0.2

⁺ N/A = not applicable, one or more of solids concentrations are below detection limits.

Table 4.3. Concentration of Radioactive Components in the Composite Wash
Solution and the Initial and Final Entrained Solids

Component	Initial Centrifuged Solids Conc., µCi/g	Composite Wash Conc., µCi/g	Damp Solids Conc., μCi/g	Ratio: Damp Solids Initial Solids
Total Alpha	5.1E-01	< 4.E-05	5.8E+00	11.4
90Sr	1.5E+02	1.2E-02	1.7E+03	11.1
⁹⁹ Tc	2.09E+01 (μg/g)	2.4E-01 (μg/g)	1.62E+02 (µg/g)	7.8
137Cs	1.9E+02	4.3E+00	4.0E+02	2.1
¹³⁴ Cs	< 8.E-02	8.5E-04	9.4E-02	NA
⁶⁰ Co	< 7.E-02	2.5E-04	4.3E-01	NA
¹⁵⁴ Eu	< 2.E-01	< 1.E-04	3.1E+00	NA
¹⁵⁵ Eu	< 5.E-01	< 1.5E-03	3.5E+00	NA
²⁴¹ Am	2.5E-01	< 1.5E-03	2.8E+00	11.1

⁺ N/A = not applicable, one or more of solids concentrations are below detection limits.

Table 4.4 presents the concentrations of each 100-mL wash using a 0.45-μ dead-end filter along with a composite of all three washes. As would be expected, with each subsequent wash, the concentration of soluble species, such as Al, Cr, K, P, and Na, decreased.

The privatization contract requires that the slurry containing entrained solids be returned to DOE with less than 60 g of Na/kg of dry entrained solids. At these low-solids concentrations, this requires significant washing for sodium removal. During the washing process, there were approximately 2.8 g of dry solids. The third wash removed 0.23 g of Na from these solids. Assuming the third wash was returned with the entrained solids to DOE, this solution would contain 82 g sodium per kg of entrained solids. This is above the current DOE limit.

Based the ratio of sodium in the supernatant to sodium in the first wash and assuming the concentration is by dilution alone, a 100-mL wash solution should decrease the sodium concentration in each subsequent wash by ten fold. However, the second wash decreased the sodium concentration by only three fold and the third wash by only 2 fold. This reduction in sodium removal with each subsequent wash seems to indicate the presence of some slightly soluble sodium salt that is limiting the rate of sodium removal. Based on the data, this salt is believed to be sodium oxalate. The oxalate concentration in the permeate is approximately $500 \mu g/mL$. The composite wash solution, in contrast, is nearly 14 times higher, at $6800 \mu g/mL$ oxalate. These results are also verified by the high TOC measurements of the composite wash solution. Thus, as the sodium concentration decreased, more of the sparingly soluble sodium oxalate was dissolved from the solids. This in turn resulted in higher sodium concentrations in the later washes than would be predicted by dilution alone.

Table 4.4. Composition of the Entrained Solids Wash Solutions, Individually and as a Composite

	First Wash	Second Wash	Third Wash	Composite Wash
Analyte	Conc., μg/mL	Conc., μg/mL	Conc., µg/mL	Conc., μg/mL
Al	1010	31	18.8	253
Ba	< 1	< 1	< 1	< 1
Ca	< 32	< 6	< 6	1.3
Cd	< 3	< 1	< 1	< 1
Со	< 6	< 1	< 1	< 1
Cr	5	4	2.58	3.3
Cu	< 3	< 1	< 1	< 1
Fe	< 3	< 1	< 1	0.2
K	1510	24	< 52	363
La	< 6	< 1	< 1	< 1
Mg	< 13	< 3	< 3	< 3
Mn	< 6	< 1	< 1	< 1
Mo	< 6	< 1	< 1	< 1
Na	13900	4130	2340	5560
Nd	< 13	< 3	< 3	< 3
Ni	< 3	< 1	< 1	< 1
P	23	1	< 3	6.3
Pb	< 13	< 3	< 3	1.9
Si	27	18	25	18
Ti	< 3	< 1	< 1	< 1
U	< 260	< 52	< 52	< 52
Zr	< 6	< 1	< 1	< 1
Zn	< 6	. < 1	< 1	< 1
TIC	NM*	NM	NM	87
TOC	NM	NM	NM	2310
Cl	NM	NM	NM	52
F	NM	NM	NM	30
NO_3	NM	NM	NM	1800
NO_2	NM	NM	NM	890
SO_4^{-2}	NM	NM	NM	47
PO_4^{-3}	NM	NM	NM	50
$C_2O_4^{2-}$	NM	NM	NM	6800

^{*} NM = not measured

5.0 Physical Properties Testing and Results

Two AW-101 slurry samples were analyzed for density of the bulk slurries, settled solids, settled supernatant, centrifuged solids, and centrifuged supernatant. The first "diluted slurry" was taken following dilution of the as-received material (See Figure 2.4). The second "dewatered slurry" was taken from the crossflow filter system after dewatering from 2200 mL to 1000 mL (See Figure 2.5).

A known mass of each slurry was placed in duplicate in volume-graduated centrifuge cones. The duplicates were then allowed to settle for 3 days. The total mass (M_B) and volume (V_B) of the settled solids were recorded, and the density of the bulk slurry was calculated $(D_B=M_B/V_B)$. In addition, the volume of the settled solids (V_{ss}) and the volume of the settled supernatant (V_{sl}) were recorded. The vol% settled solids were then calculated $(Vol\%_{ss}=V_{ss}/V_B\times 100\%)$. A portion of the settled supernatant was then transferred to a graduated cylinder, and its mass (M_{slb}) and volume (V_{slb}) were recorded. Using these data, the density of the settled supernatant was calculated $(D_{sl}=M_{slb}/V_{slb})$.

Since all of the settled supernatant could not be removed from the centrifuge cone without disturbing the settled solids, the mass of the settled solids (M_{ss}) could not be measured directly. Therefore, the mass of the settled solids was calculated. This was done by first calculating the mass of the settled supernatant in the centrifuge cone using the measured supernatant density and volume ($M_{sl} = D_{sl} \times V_{sl}$) and then subtracting this mass for the mass of the bulk slurry to get the mass of the settled solids ($M_{ss} = M_B - M_{sl}$). The density of the settled solids was then calculated ($D_{ss} = M_{ss} / V_{ss}$) as well as the wt% settled solids ($Wt\%_{ss} = M_{ss} / M_B \times 100\%$).

The settled supernatant was then added back to the centrifuge cones and centrifuged at approximately 1000 times the force of gravity for 1 hour. All of the centrifuged supernatant was then transferred to a graduated cylinder, and its mass (M_{cl}) and volume (V_{cl}) were recorded. The density was calculated ($D_{cl}=M_{cl}/V_{cl}$). The mass (M_{cs}) and volume (V_{cs}) of the centrifuged solids were then recorded, and the density was calculated ($D_{cs}=M_{cs}/V_{cs}$). In addition, the wt% centrifuged solids ($Wt\%_{cs}=M_{cs}/M_B\times 100\%$), and vol% centrifuged solids ($Vol\%_{cl}=V_{cl}/V_B\times 100\%$) were also calculated.

The centrifuged solids and supernatants were then each dried at 105° C for 24 hours. The mass of the dried centrifuged supernatant (M_{del}) and dried centrifuged solids (M_{des}) was then measured. Assuming all mass lost during the drying process is water and not another volatile component, the wt% total solids in the bulk slurry was calculated (wt% total solids = ($M_{des}+M_{del}$)/($M_{es}+M_{el}$) × 100%).

An additional calculation was performed to determine the wt% solids in the samples, excluding all interstitial liquid (wt% undissolved solids). This wt% undissolved solids can also be thought of as the solids left if all the supernatant could be removed from the bulk slurry. The following equation was used:

Wt% undissolved solids =
$$\left(1 - \frac{1 - \frac{M_{dsc}}{M_{cs}}}{1 - \frac{M_{dcl}}{M_{cl}}} \right) \times \frac{M_{cs}}{M_B} \times 100\%$$
 (5.1)

This calculation assumes 1) that the supernatant above the centrifuged solids and the interstitial liquid surrounding the centrifuged solids have the same composition and 2) that all mass loss during the drying of the centrifuged solids is water loss from interstitial liquid.

The density results are listed in Table 5.1. The weight percent (wt%) and volume percent (vol%) settled solids, wt% and vol% centrifuged solids, and wt% total solids were measured for these samples as well. The wt% and vol% solids results are listed in Table 5.2.

The results in Table 5.1 suggest the density of the liquid did not vary by more than 3% before and after the dewatering step. This small decrease in liquid density is probably caused by the 150 g of water left in the CUF after clean water flux testing. An average of the diluted feed and dewatered slurry was calculated at the bottom of Table 5.1. Since there were only sufficient solids to perform density calculations on the dewatered samples, the average solids-density data are just for the dewatered slurry.

Table 5.1. Density Measurement for Samples of AW-101 Diluted Slurry Feed and Dewatered Slurry

	Density, g/mL				
	Slurry	Settled Solids	Settled Supernatant	Centrifuged Solids	Centrifuged Supernatant
Diluted Slurry Feed	1.30	NA	1.28	NA	1.311
Diluted Slurry Feed Duplicate	1.33	NA	1.28	NA	1.308
Diluted Slurry Feed Average	1.31	NA	1.28	NA	1.310
Relative Percent Difference	2.0%	NA	0%	NA	0.2%
Dewatered Slurry	1.30	1.41	1.30	1.55	1.290
Dewatered Slurry Duplicate	1.30	1.63	1.30	1.60	1.270
Dewatered Average	1.30	1.52	1.30	1.58	1.280
Relative Percent Difference	0%	14.4%	0%	3.4%	1.6%
AW-101 Average	1.31	1.52*	1.29	1.58*	1.295

NA, insufficient solids

The results of the calculation in Equation 5.1 are listed in Table 5.3 along with the wt% dried residue from the centrifuged solids (Solids Residue= $M_{cs}/M_{des} \times 100\%$) and dried centrifuged supernatant (Supernatant Residue= $M_{del}/M_{sl} \times 100\%$). Table 5.3 shows that the wt% undissolved solids is negative or nearly 0 and that the wt% residual solids in the centrifuged liquid is higher than in the wt% residual solids in the centrifuged solids contain more water than the supernatant). Therefore, one or both of the two of the original assumptions above is wrong. Since the solids and liquids were homogenized both before and after the dewatering step, it is almost certain that the interstitial liquid and supernatant have the same composition. Therefore, it is likely that some of the mass loss from the centrifuged solids was not water loss from interstitial liquid. This could have been loss of a volatile constituent other than water or the loss of waters of hydration associated with the solids.

^{*} Only includes the Dewatered Slurry

Table 5.2. Wt% and Vol% Solids Data for AW-101 Diluted Feed and Dewatered Slurry Samples

	Wt% Settled	Wt% Centrifuged	Vol% Settled	Vol% Centrifuged	Wt% Total
Diluted Slurry Feed	5.3	1.8	6.1	2.0	38.3
Diluted Slurry Feed Duplicate	7.3	2.5	6.0	1.4	39.7
Diluted Slurry Feed Average	6.3	2.1	6.1	1.7	39.0
Relative Percent Difference	31.8	31.4	1.5	37.8	3.6
Dewatered Slurry	9.9	3.1	9.1	2.6	36.5
Dewatered Slurry Duplicate	11.5	3.0	9.2	2.5	37.3
Dewatered Slurry Average	10.7	3.0	9.2	2.5	36.9
Relative Percent Difference	15.5	0.6	1.3	3.8	2.2

Table 5.3. Results of Wt% Residual Solids and Undissolved Solids Calculation Following Drying at 105°C for 24 Hours

Sample	Wt% Residual Centrifuged Solids	Wt% Residual Centrifuged Supernatant	Wt% Undissolved Solids
Diluted Slurry Feed	29.1	40.2	-0.3
Diluted Slurry Feed	46.1*	39.9	0.3*
Duplicate			
Dewatered Slurry	32.9	38.1	-0.3
Dewatered Slurry	31.8	37.9	-0.3
Duplicate			
Average	31.3	39.0	-0.3

^{*} Not included in average

This is supported by the observation that the wt% total solids in Table 5.2 is higher for the diluted feed (39.0 wt%) compared to the dewatered slurry (36.9 wt%). Given that the dewatered slurry contained a higher wt% centrifuged solids (3.0 wt%) compared to the diluted feed (2.1 wt%), the only explanation for these data is that the solids contain a volatile material not associated with the interstitial liquid and that this is most likely waters of hydration associated with the solids. It is also possible that the high salts of the centrifuged supernatant retained or reabsorbed water during the heating, cooling, and weighing process. In any case, it appears that this technique was not adequate to measure the low solids concentration in a high-salt solution.

5.1 Rheological and Flow Properties

The AW-101 diluted feed and dewatered slurry were analyzed for shear stress as a function of shear rate from approximately 0.1 to 300 s⁻¹ according to procedure 29953-010. The AW-101 diluted feed was analyzed using the Bohlin CS viscometer modified for glovebox operations. Concentric cylinders with a 25-mm-diameter inner cylinder and a "small sample cell" outer cylinder were used as the

measuring geometries. The dewatered slurry was analyzed using a Haake M5 measuring head modified for hot cell operations. An MVI measuring geometry was used on the Haake. Both the diluted feed and dewatered slurry were analyzed in duplicate at 25°C. A 49.9 cP standard, Brookfield lot 102298, was used to check the calibration of both instruments before samples were analyzed.

The samples were stirred to combine the separated liquid and solid layers before testing. Shear stress as a function of shear-rate data was obtained by measuring the shear stress produced at a specific shear rate. The shear rate was gradually increased from approximately 0.1 to 300 s⁻¹, generating the increasing shear-rate curve, and then back down to 0.1 s⁻¹, generating the decreasing curve. For the dewatered slurry, the shear rate was analyzed again with the same sample still in the instrument. A difference between the first and second run would indicate potentially unusual behavior in the samples, including (but not limited to) settling of the solids within the instrument, the sample being affected by shearing in the instrument, or water loss through evaporation. In all cases, the first and second runs were virtually identical. The sample cup was then cleaned, and a duplicate sample was analyzed using the same parameters.

Rheograms for AW-101 diluted slurry feed and dewatered slurry are presented in Figures 5.1 and 5.2. Figure 5.1 provides a plot of shear stress versus shear rate for both the diluted feed and dewatered slurry. Figure 5.2 gives the viscosity as a function of shear rate for the same runs. The standards and duplicates are presented in figures in Appendix F. As seen in the diluted feed sample (shear rate of 0 to 1000 s⁻¹), there is a nearly linear relationship between shear stress and shear rate over the shear-rate range examined and no detectable yield stress. This is referred to as Newtonian behavior. The Newtonian behavior seen here is because the concentration of solids is so small and insignificant that a non-Newtonian feature of particulate/fluid suspensions is not produced. The viscosity was nearly constant between 5 to 7 cP (50 to 650 s⁻¹) over the shear-rate range examined.

The viscosity of the dewatered slurry was between 5 to 10 cP (50 to 300 s⁻¹). The dewatered slurry exhibited some deviation from Newtonian character: a slight shear-thinning or pseudoplastic behavior, especially at shear rates less than 100 s⁻¹. This behavior results from particle and fluid interactions. A shear-thinning or pseudoplastic behavior is a common feature of low solids content suspensions.

Given the small vol% settled solids in both the diluted feed (6.1%) and the dewatered feed (9.2%), it is not surprising that the two samples have similar viscosities. For both slurries, at shear rates greater than 50 s⁻¹, the viscosity is due to the high salt concentration rather than to the influence of solids. For example, a similar solution of 7 M NaOH has a viscosity of 6.1 cP without any solids present (Weast 1984).

5.2 AW-101 Slurry Particle-Size Distribution Measurements

The particle-size distribution (PSD) of the AW-101 diluted feed (sample 101-AW-PSD) and the dewatered slurry (sample CUF-101-AW-005) is described below. The first sample was diluted AW-101 waste that was fed into the CUF (diluted feed). The second sample was the slurry that was pumped in the recirculating loop of the CUF during 14 hours of test matrix and then dewatered to 45% of its original volume (dewatered slurry).

Figure 5.1. Rheogram of Shear Stress as a Function of Shear Rate for the Diluted and De-Watered Slurries

A Microtrac X-100 Particle Analyzer and a Microtrac Ultrafine Particle Analyzer (UPA) were both used to measure the PSD of these tank samples. The Microtrac X-100 Particle Analyzer measures particle diameter by scattered light from a laser beam projected through a stream of the sample particles diluted in a suspending medium. The amount and direction of light scattered by the particles is measured by an optical detector array and then analyzed to determine the size distribution of the particles. This measurement is limited to particles with diameters between 0.12 and 700 μ m. The Microtrac UPA measures particle diameter by Doppler-shifted scattered light. This method is limited to particles with diameters between 3 nm and 6.5 μ m.

The particle-size distribution of both samples and their duplicates was measured on the Microtrac X-100 at a flow rate of 40 mL/s and on the Microtrac UPA under conditions of Brownian motion. For each sample replicate, the PSD was measured three times and averaged. The PSD of the averaged data on a volume-weighted basis and on a number-weighted basis is reported. The suspending medium for these analyses was a surrogate supernatant based on the ICP and IC data obtained for the 101-AW supernatant. The composition of this supernatant is reported in Table 5.4.

Figure 5.2. Rheogram of Viscosity as a Function of Shear Rate for the Diluted and De-Watered AW-101 Slurries

Table 5.4. Surrogate Supernatant Composition

Component	Concentration (M)
$Cr(NO_3)_3 \cdot 9 H_2O$	0.0010
NaNO ₃	1.98
KOH	0.59
NaOH	3.07
Al(OH) ₃	0.61
Na ₂ SO ₄	0.019
Na ₂ HPO ₄ · 7 H ₂ O	0.020
NaCl	0.094
NaF	0.044
NaNO ₂	1.37

In Appendix H, the PSD plots for the standards and the samples and their duplicates under all conditions measured are presented in volume-weighted distribution and number-weighted distribution form. The number-weighted PSD is computed by counting each particle and by weighting all the particle diameters equally. The volume-weighted PSD, however, is weighted by the volume of each particle measured, which is proportional to the cube of the particle diameter. In general, the PSD plots show that both samples and their duplicates were polydispersed, and as a result, the mean size of the volume-weighted distribution is much larger than the mean size of the number-weighted distribution.

In Figure 5.3, the averaged PSDs for the diluted feed and dewatered slurry in cumulative under-size-percentage form are presented for the Microtrac X-100 system. The reproducability of the two dewatered slurry-feed PSD plots suggest that the slurry was thoroughly homogenized, and each extracted sample was a representative specimen. The cumulative under-sized-percentage plots using the UPA system (see Figure 5.4) show the samples and their duplicates. Once again, the replicates are reasonably reproducible. The PSD analysis (Figures 5.3 and 5.4 combined) of both AW-101 tank samples indicate that the large majority (> 99%) of the volume and number of the particles have diameters greater than 0.2 and less than 25 μ m. On a volume-weighted basis, approximately 99% of the particles in the diluted feed sample and 95% of the particles in the dewatered slurry were greater than 1 μ m. In general, the plots indicate a reduction in particle size from the diluted feed to the dewatered slurry.

Volume- and number-weighted histograms of the diluted feed and dewatered slurry are presented in Figures 5.5 and 5.6 for the Microtrac X-100 system and the UPA system, respectively. Once again, these figures indicate a reduction in particle size after operation in the CUF. This is clearly evident in the number-weighted distribution of Figure 5.5, where the dewatered feed shows significant particles less than 0.7 μ m. The decrease in particle size after pumping in the CUF may indicate that the solids are eroded, and smaller particles or aggolmerates are formed, due to vigorous mixing and shearing of particles in the CUF re-circulation line. The volume-weighted distribution plots of both samples show a bimodal distribution formed from overlapping two Gaussian distribution peaks. The major particle-size peaks along with the relative volume or number percentage that each peak represents are summarized in Tables 5.5 and 5.6. Two particle distributions with peaks between 1 and 2 μ m and 4 and 6 μ m were observed in both tank samples. In a sample of diluted feed, approximately 42% of the volume of the particles is found in the first distribution, which centers around 2 μ m with a distribution width of 1.4 μ m. The second distribution for this sample (occupying approximately 58% of the volume or mass of particles) centers around 5.5 μ m in diameter with a distribution width of 3.5 μ m.

In a sample of dewatered slurry, approximately 25% of the volume (mass) of the particles is found in the first distribution, which centers around 1 μm with a distribution width of 0.7 μm . The second distribution for this sample (occupying approximately 75% of the volume or mass of particles) centers around 4 μm in diameter with a distribution width of 6 μm . A third distribution was observed in the duplicate sample of the dewatered slurry at 31 μm . This distribution accounts for only a small percent of the volume of particles (3%).

Since the majority of the particles are below $10~\mu m$ in diameter, the behavior of the particles will be colloidal in nature. Thus, particles will be governed by surface chemistry and van der Waals attractions. Furthermore, because of their small size, the particles could form a low permeability filter cake on the filter surface, which would result in (1) low filtrate fluxes, (2) reduced permeability at high pressures, and (3) little effect of axial velocity on filtrate flux. As more of these particles are generated during testing, the filtrate flux would be reduced further. In general, these observations were seen during cross-flow filtration testing.

Figure 5.3. Cumulative Under-Size Percentage Distribution for AW-101 Using the Microtrac X-100

Figure 5.4. Cumulative Under-Size Percentage Distribution of AW-101 Using the Microtrac UPA

Figure 5.5. Histogram of AW-101 Using the Microtrac X-100

Figure 5.6. Histogram of AW-101 Using the Microtrac UPA

Table 5.5. Particle Size Distribution (Volume) of Hanford Tank 241-AW-101 Samples

	UPA (Brown	ian Motion)	X-100 (40 mL/sec)		
Sample	Size (μm)	Vol%	Size (µm)	Vol% 58	
Diluted Feed Sample	*	60	5.47		
(101-AW-PSD)	1.89	40	2.13	42	
Diluted Feed Duplicate	*	100	Not	Not	
(101-AW-PSD)		100	Measured	Measured	
Dewatered Slurry Sample	*	100	4.00	74	
(CUF 101-AW-005)			1.17	26	
Dewatered Slurry	*	100	30.8	3	
Duplicate			4.29	75	
(CUF 101-AW-005)			1.15	22	

^{*} The mean diameter of these particles cannot be determined because a significant fraction of the volume of the particles in this distribution exceed the maximum effective particle diameter range of the Microtrac UPA $(6.5 \mu m)$.

Table 5.6. Particle Size Distribution (Number) of Hanford Tank 241-AW-101 Samples

	UPA (Brow	nian Motion)	X-100 (40 mL/sec)		
Sample	Size (µm)	Num %	Size (µm)	Num %	
Diluted Feed Sample (101-AW-PSD)	1.80	5 95	1.44	100	
Diluted Feed Duplicate (101-AW-PSD)	0.25	100	Not Measured	Not Measured	
Dewatered Slurry Sample (CUF 101-AW-005)	0.31	100	0.98 0.48	77 23	
Dewatered Slurry Duplicate (CUF 101-AW-005)	0.27	100	0.96 0.42	59 41	

6.0 Conclusions

Based on the cross-flow filtration testing of Hanford Tank AW-101 with a 0.1-µm Mott filter, the following conclusions have been obtained. They have been divided up into categories for clarity.

AW-101 Crossflow Filtration

- Cross flow filtration with a 0.1-μm Mott filter produced a clear supernatant with no observable solids
- Using a 0.1-µm Mott filter and AW-101 feed (diluted to 6.5M Na), filtrate fluxes ranged from 0.9 to 1.6 m³/m²/day. The lowest fluxes occurred at 1.4 bar and 2.0 m/s and the highest fluxes at 4.5 bar and 3.6 m/s. Both these results are significantly less than the 5.9 m³/m²/day design basis.
- After testing, it was determined that the 0.1-\mu Mott filter was designed for gas applications. The gas filters have a lower porosity than liquid filters. By obtaining the proper filter, higher filtrate fluxes may be possible.
- Filtrate flux was found to be directly proportional to transmembrane pressure and inversely proportional to velocity over the range of study.
- At the higher pressures and velocities, there was a reduction in flux associated with operating time. This indicates possible fouling of the filter due to particulates from the slurry or from CUF equipment itself.
- Filtrate flux was 52% less after concentrating the slurry from 2.2 L to 1.0 L.

Cold Filtration and Acid Washing Tests

- The filtrate flux results generated from the AW-101 simulant at 3.8 bar were 1.8 m³/m²/day as compared to those of the actual AW-101, which were 1.4 m³/m²/day. The AW-101 simulant does a reasonably good job of simulating filtration results of the actual waste.
- Nitric acid rinses produced higher fluxes than the clean-water fluxes.
- Clean-water fluxes were measured before and after the AW-101 test matrix. At low pressure
 (2 bar), the same clean-water flux was obtained both before and after testing. At high pressure
 (4.8 bar), the final flux was 40% of the initial flux. The reduction in flux appears to be caused by
 filter fouling during the water testing.

AW-101 Chemical and Radiochemical Properties

- The entrained solids contain U, Al, Si, and Na as well as high concentrations of TRU, ⁹⁰Sr, and ⁹⁹Tc. The radionuclide concentrations indicate that the entrained solids would be considered TRU (> 100 nCi/g).
- Sodium removal during entrained solids washing is limited by sparingly soluble oxalate. This
 may result in the entrained solids requiring more than three washes to obtain the required 60 g
 sodium per kg dried entrained solids.
- Because of the high ¹³⁷Cs concentration in the supernatant, it was not possible to determine the decontamination factor of TRU and ⁹⁰Sr through the filter. Additional chemical separation would be required to decrease the detection limit below the levels found in the permeate.

¹ After operation, it was determined that this filter was designed for gaseous rather than liquid applications. Gas filters have a lower porosity than liquid filters and offer a greater resistance to liquid flow.

Physical Properties

- The weight percent insoluble solids was difficult to measure in the high salt solution because of
 its low concentration. The low insoluble-solids concentration also resulted in no change in
 density in the dewatered slurry as compared to the original feed.
- The slurry feed behaved as a Newtonian fluid due to the low concentration of solids. The
 dewatered slurry, in contrast, deviated from Newtonian character as slightly shear-thinning or
 pseudoplastic. Both the original feed and dewatered slurry had viscosities ranging from 5 to
 10 cP.
- The particle-size distribution of AW-101 diluted feed and dewatered slurry was similar, but the
 particle size of the dewatered slurry was reduced. Thus, it appears that there was particle
 deagglomeration after the 15 hours of CUF operation. The reduction in the filtrate flux in the
 CUF with the de-watered slurry (See Section 3.1) may be the result of the reduction of the
 particle size observed in the de-watered slurry sample.
- In the case of both AW-101 diluted feed and dewatered slurry, the particle size ranged from 0.2 to 30 μm (> 95% of particles). There were no particles detected at less than 0.17 μm. This would indicate that the solids should be removed with the 0.1-μm filter, but may create an impermeable film on the filter surface and reduce the filtration rate.

days to a faithe all will refer a fell as a committee of the contract become because as a final contract of the contract of th

7.0 References

10 CFR 61. 1993. U.S. Department of Energy, "Licensing Requirements for Land Disposal of Radioactive Waste," Subpart D, Section 55, U.S. Code of Federal Regulations.

Geeting, J. G. H., and B. A. Reynolds. 1997. "Bench-Scale Crossflow Filtration of Hanford Tank C-106, C-107, B-110, and U-110 Sludge Slurries," PNNL-11652. Pacific Northwest National Laboratory, Richland, Washington.

Nash, C. A., and J. Siler. 1997. "Filtration of Nonradioactive Hanford Waste Simulants." SRTC-BNFL-016. Savannah River Technology Center, Westinghouse Savannah River Company, Aiken, South Carolina.

River Protection Project Waste Treatment Plant (RPP-WTP) (formerly TWRS) Privatization Contract. 1996. DE-RP06-96RL13308. U.S. Department of Energy, Richland, Washington.

Urie, M. W., J. J. Wagner, L. R. Greenwood, O. T. Farmer, S. K. Fiskum, R. T. Ratner, and C. Z. Soderquist. 1999. "Inorganic and Radiochemical Analysis of AW-101 and AN-107 'Diluted Feed' Materials," PNWD-2463, Rev. 1. Pacific Northwest National Laboratory, Richland, Washington.

Weast, R. C. (Ed). 1984. CRC Handbook of Chemistry and Physics, 64th Edition, CRC Press, Inc., Boca Raton, Florida.

Appendix A: AW-101 Cross Flow Filtration Test Instruction

Document No.: BNFL-TP-29953-022 **PNNL Test Instruction** Rev. No.: 0 Title: Entrained Solids Removal of AW-101 Work Location: RPL SFO HLRF Page 1 of 10 Effective Date: Upon Final Approval Author: Kriston P. Brooks Supercedes Date: New Use Category Identification: Information Required Reviewers: Identified Hazards: X Technical Reviewer __SFO Manager Radiological Hazardous Materials Physical Hazards Hazardous Environment __ Other: X Yes No Are One-Time Modifications Allowed to this Test Instruction? NOTE: If Yes, then modifications are not anticipated to impact safety. For documentation requirements of a modification see SBMS or the controlling Project QA Plan as appropriate. On-The Job Training Required? _____ Yes or FOR REVISIONS: Is retraining to this procedure required? ____Yes __X_No Does the OJT package associated with this procedure require revision to reflect procedure changes? X N/A Date Approval Signature

1.0 Applicability

This test instruction is to be used to perform the testing of the Cell Unit Filter (CUF) in the HLRF A-cell with approximately 2200 mL of AW-101 supernatant.

2.0 Supporting Documents

This test instruction is not a stand-alone document. It will be used in conjunction with PNNL Operating Procedure BNFL-TP-29953-020 which contains the necessary procedural information for the safe operation of the CUF. It is also linked to PNNL Test Plan No. BNFL-TP-29953-4 which contains an overall description of the project, ES&H compliance, emergency response, and the hazards assessment and mitigation.

3.0 Responsible Staff

The staff responsible for executing this test plan are as follows.

- Task Manager Kriston Brooks
- SFO Manager Randy Thornhill
- Test Engineers Kriston Brooks, Ken Rappe, Lynette Jagoda
- Hot Cell Technician Steve Forbes and Mac Zumhoff
- Radiological Control Technician

4.0 Materials, Equipment, Supplies and Reagents Needed

4.1 Materials Required

- Twenty-five 20 mL plastic scintillation vials for filtrate and slurry samples, pre-labeled as follows:
 - CUF-AW101-001 through CUF-AW101-025.
- 2. One 2 liter polyethylene bottle and two 1 liter polyethylene bottles. They should be labeled as follows: "AW-101 Filtrate," "AW-101 Drained Slurry," and "CUF AW-101 First Rinse." The bottle labeled "AW-101 Filtrate" should be marked with a black line for 1.2 liter volume. The bottle labeled "CUF AW-101 First Rinse" should be marked with a black line for 1 liter volume.
- 3. Tubing for de-watering mode.
- 4. 1 1000 mL capacity, 0.45 micron nylon filter unit. The bottle and filter unit should be labeled, "AW-101 filtrate."
- 5. A 500 mL bottle labeled "AW-101 Composite Wash."
- 6. Two 10 liter containers, one labeled for the alkaline rinses and the other labeled for the acidic rinses.
- 7. Containers for draining from the bottom of the pump and from the sample valve.
- 8. Transfer AW-101 UFA, AW-101 UFB, AW-101 UFC, AW-101 UFD, AW-101 UFE, and AW-101 UFF from C-cell to A-cell.

4.2 Equipment

- 1. 4000 gram balance
- 2. pH probe
- 3. Hand held periscope. To be used to read filtrate flowmeter.
- 4. Stopwatch
- 5. Calculator

- 6. CUF Ultrafiltration system
- 7. 1000 W Chiller

4.3 Reagents Needed

1. 1 liter of 1M HNO₃

4.4 Other Supplies

- 1. Workplace Copy of Operating Procedure BNFL-TP-29953-020
- 2. Extra Copies of Data Sheets 1, 2, and 3
- 3. Laboratory Record Book

5.0 Test Instructions

The test engineer will initial or check in the left hand margin of each step below when completed.

The laboratory record book (LRB) shall be used to record other testing information as required by this procedure and all test conditions not stated by this procedure.

Cross-contamination between samples and contamination of samples from outside sources must be minimized at each step. Use new tools and bottles for each sample as much as possible. Those tools that are reused should be washed and rinsed prior to reuse.

Keep all test materials in sealed containers as much as possible to prevent them from drying.

5.1 Prestart

- 5.1.1 Inventory materials, equipment, supplies, and reagents to ensure all required items are available. Assure that all materials have been modified for remote handling.
- 5.1.2 Do the following and initial and date when each item is completed.

Review PNNL Operating Procedure BNFL-TP-29953-020.

Review the work instructions in BNFL-TP-29953-022.

- 5.1.3 Conduct the "0.0 Pre-Start" operations in BNFL-TP-29953-020.
- 5.1.4 Obtain the following information:

M&TE List:

KGQ Balance 1:

Calib ID 362-06-01-054 Calib Exp Date 8/29

Location Acall North

16 P Balance 2:

Calib ID

362-06-01-061

Calib Exp Date 3/99

Location Acel South

5.1.5 Weigh each jar with lid and AW-101 supernatant. Record the weights below.

	AW-101 UFA		AW-101 UFB		AW-101 UFC	
Total	862.80 g	Total	869.09 g	Total	839.78	_g
	AW-101 UFD ★		AW-101 UFE		AW-101 UFF	
Total	841.44 g	Total	899.67 g	Total	722.97	_g

- 5.1.6 Conduct the "1.0 <u>Start-Up</u>" operations in BNFL-TP-29953-020 using AW-101. Shake the jars thoroughly before adding them to the slurry reservior. There may be some solids left the jars that cannot be transferred by shaking. If so, consult with the cognizant engineer on recovering these solids. Record the method of recovery in the LRB.
- 5.1.7 Record the weights of the jar and lid in the spaces provided below. Calculate the amount of material remaining in the jar. The cognizant engineer will determine if further solids recovery is warranted.

AW-101 UFA	AW-101 UFB	AW-101 UFC
Jar+Lid <u>356.32</u> g Tare <u>354.9244</u> g	Jar+Lid 358.71 g Tare 356.9183 g	Jar+Lid <u>358.36</u> g Tare <u>356.3316</u> g
Total <u>1.40</u> g	Total <u>1.79</u> g	Total <u>2.03</u> g
AW-101 UFD	AW-101 UFE	AW-101 UFF
Jar+Lid <u>361.96</u> g Tare <u>360.5024</u> g	Jar+Lid <u>3 60.64</u> g Tare <u>359.207</u> g	Jar+Lid <u>359.75</u> g Tare <u>358.5115</u> g
Total 1.46 g	Total 1.44 g	Total1,24 g

5.1.8 Record the level in the slurry reservoir.

Height 47/8 inches

5.2 Operation

5.2.1 Conduct the "3.0 Operation during Ultrafilter Recycle Mode" operations in BNFL-TP-29953-020 using the conditions below. Filtrate flow rate should be monitored and data collected as specified in the operating procedure. After each condition, the test engineer should initial and date the table below.

Condition	Transmembrane dition Flowrate (gpm) Pressure (psig)			
1	2.27	30	KGR 2/16	
2	4.20	55	KGR 2/16	
3	2.27	40	xk9 2/16	
4 300	1.13	30	A119 2/16	
5	2.27	20	1819 2/16	
6	3.13	30	XIO 2116	
7	2.27	- 30	09/19 2/17	
8	4.20	55	799 2117	
9	4.20	40	1718 2/17	
10	4.20	70	Kris 2/17	
11	3.13	55	16 7/17	
12	5.23	55	718 2/17	
13	2.27	30	11B 2/12	
14	4.20	55	KGR 2/17	

5.2.2 Tare weigh a Lliter bottle labeled "AW-101 Filtrate."

Weight of empty "AW-101 Filtrate" with lid 333.96 g

- 5.2.3 Conduct the "4.0 <u>Operation during Ultrafilter Dewatering Mode</u>" operations in BNFL-TP-29953-020 using the optimum conditions from step 5.2.1. Fill "AW-101 Filtrate" to the 1.2 liter line. When the dewatering is approximately half-way done, place the stainless steel plug into the slurry reservoir.
- 5.2.4 Replace the lids on the bottles and weigh.

Weight of "AW-101 Filtrate" with lid 1895.75 g

Total weight of material removed 1561.79 g

Volume of material removed (wt/1.3) 1201.38 mL

5.2.5 Record the level in the slurry reservoir.

Height 2 1/2 inches Video #53

- 5.2.6 Tare weigh two sample vials. Obtain 2 samples of at least 20 grams each from the container labeled "AW-101 Filtrate." Record the weight and sample number in Data Sheet 3. These will be used for chemical and radiochemical analyses.
- 5.2.7 Obtain 2 filtrate samples of at least 20 grams each following "8.0 Filtrate Sampling" in BNFL-TP-29953-020 and using the pre-labeled sample vials. If required, more than two sample vials may be used. Record the weight and sample number in Data Sheet 3. These will be used for chemical and radiochemical analyses.
- 5.2.8 Obtain 1 slurry sample of at least 20 grams following "7.0 Slurry Sampling" in BNFL-TP-29953-020 and using the pre-labeled sample vials. This will be used for physical property analyses. Obtain 2 slurry samples of at least 10 grams following "7.0 Slurry Sampling" in BNFL-TP-29953-020 and using the pre-labeled sample vials. This will be used for particle size distribution measurements.
- 5.2.9 Using the rheometer sample cup, obtain 40 mL of slurry material for rheological measurements following "7.0 <u>Slurry Sampling</u>" in BNFL-TP-29953-020. This may require as many as eight samplings to obtain this material.
- 5.2.10 Adjust the flow to < 2 gpm and the pressure to < 10 psig or turn off the pump while the rheology of the material is measured. Pour the 40 mL used for rheological measurements back into the CUF.
- 5.2.11 Increase the flow and pressure to its optimal value and repeat step 5.2.9 and 5.2.10 for a second 40 mL slurry sample.
- 5.2.12 Conduct the "3.0 Operation during Ultrafilter Recycle Mode" operations in BNFL-TP-29953-020 using the conditions below. Filtrate flow rate should be monitored and data collected as specified in the operating procedure. After each condition, the test engineer should initial and date the table below.

Condition	Condition Flowrate (gpm) Press		Initial and date when complete
1	4.20	40	ATB 2/17
2	4.20	55	108 2/17
3	4.20	70	skipped
4	3.13	Optimum from 1-3	10000 - Kis 2/1
5	5.23	Optimum from 1-3	7

Maximum possible - 35 PSB

5.2.13 Conduct the "11.0 Shutting down" operation in BNFL-TP-29953-020.

5.3 Rinsing and Draining the System

5.3.1 Tare weigh the 1 liter bottle labeled, "AW-101 Drained Slurry."
Weight of bottle and lid 294,957 g
5.3.2 Conduct the "10.0 <u>Draining the system</u> " operation in BNFL-TP-29953-020. Collect liquid in 1 liter bottle. Weigh bottle after all liquid has been removed.
Weight of slurry, bottle and lid/528.45_ g
Weight of material collected 1233, 49 g
5.3.3 Conduct the "9.0 Rinsing the system" operation in BNFL-TP-29953-020. The first rinse should be done with 1 liter of distilled water. This liquid should be collected and saved in the container labeled "CUF AW-101 First Rinse." The second rinse should be done with 2.2 liters of distilled water, and the final rinse with 1 liter distilled water. The second and third rinses should be collected separately from the first in the alkaline rinse storage container. The acidic solutions should be placed in a separate container.
5.3.4 Conduct the "12.0 Lay Up" operation in BNFL-TP-29953-020.
5.4 Washing the Entrained Solids
NOTE: Washing of the entrained solids can be completed anytime after Step 5.3.2.
NOTE: As much work as possible should be performed inside of the CUF drip pan.
5.4.1 Weigh the filtration system without the bottle. Attach vacuum system to 1000 mL filtration system.
Weight of filtration system without the bottle 149.759 g
Weight of filtration bottle and cap
5.4.2 Pour off clear supernate from the 1 liter bottle "AW-101 Drained Slurry" into 1000 mL filter. Allow solution to filter. Agitate bottle and pour remaining material into the filter. Remove as much material as possible. Reweigh empty bottle.
Weight of empty bottle with lid 295, 53 g
5.4.3 Cover filtration system and complete filtration.
5.4.4 Once all standing liquid is has been filtered and only wet solids remain, remove the filtrate bottle and cap. Place a clean bottle on the filtration unit.
Weight of filtered AW-101 1420,77 g (1217.149 of liquid)

	5.4.5 Obtain the tare weight of a graduated cylinder. Prepare 100 mL of distilled water in the cylinder. Weigh the full graduated cylinder.
	Tare Weight of Graduated Cylinder 104.78 g 104.98 g (ex Full Weight of Graduated Cylinder 310.0 g g Volume in Graduated Cylinder 105.23 mL (g)
	5.4.6 Pour the distilled water from the graduated cylinder into the bottle labeled "AW-101 Drained Slurry." Cap and shake. Pour contents onto the filter. Allow it to filter.
	Weight of Empty "AW-101 Drained Slurry" with lid 394.84 g
V	 5.4.7 Once all standing liquid is has been filtered and only wet solids remain, remove the filtrate bottle and cap. Take three (3) samples of the filtrate of 20 mL each by performing the following. a) Obtain the tare weight of a pre-labeled sample vial. Record weight on Data Sheet 3. b) Pipet out approximately 20 mL of material. c) Weigh sample vial and record in Data Sheet 3.
1	5.4.8 Pour the remaining liquid in a 500 mL bottle labeled "AW-101 Composite Wash."
٧	5.4.9 Obtain the tare weight of a graduated cylinder. Prepare 100 mL of distilled water in the cylinder. Weigh the full graduated cylinder.
	Tare Weight of Graduated Cylinder 104,99 g Full Weight of Graduated Cylinder 207.79 g Volume in Graduated Cylinder 107.8 mL
	Place the bottle back on the filtration unit and pour the distilled water onto the filter. Allow it to filter.
✓	 5.4.10 Once all standing liquid is has been filtered and only wet solids remain, remove the filtrate bottle and cap. Take three (3) samples of the filtrate of 20 mL each by performing the following. a) Obtain the tare weight of a pre-labeled sample vial. Record weight on Data Sheet 3. b) Pipet out approximately 20 mL of material. c) Weigh sample vial and record in Data Sheet 3.
V	5.4.11 Pour the remaining liquid in a 500 mL bottle labeled "AW-101 Composite Wash."
V	5.4.12 Obtain the tare weight of the graduated cylinder. Prepare 100 mL of distilled water in the cylinder. Weigh the full graduated cylinder.
	Tare Weight of Graduated Cylinder 194.89 g Full Weight of Graduated Cylinder 204.51 g Volume in Graduated Cylinder 99.62 mL

- V Place the bottle back on the filtration unit and pour the distilled water onto the filter. Allow it to filter.
 - 5.4.13 Repeat steps 5.4.10 through 5.4.11.
 - 5.4.14 Agitate the contents of the 500 mL bottle labeled "AW-101 Composite Wash." Take two (2) samples of the filtrate of 20 mL each by performing the following twice.
 - a) Obtain the tare weight of a pre-labeled sample vial. Record weight on Data Sheet 3.
 - 68,193 -> AW-101 Composite
 229, S49 -> AW-101
 Composite
 Composite b) Pipet out approximately 20 mL of material into the sample vial. c) Weigh sample vial and record in Data Sheet 3.
 - 196.81 g Filter bettom erryly
 5.4.15 Obtain three (3) samples of the filtered material by performing the following.
 - a) Obtain the tare weight of a pre-labeled sample vial. Record weight on Data Sheet 3.
 - b) Scrape out approximately 20 mL of material and place inside of the sample vial.
 - c) Weigh sample vial and record in Data Sheet 3.
 - 5.4.16 Clean up experiment. Save solutions and allow the filtered material to dry for 24-48 hours. Reweigh the filtration system without the bottle.

Weight of filtration system without the bottle ____150.71

6.0 Sample Analysis

The point of contact for physical property sample analysis of the slurry samples is Paul Bredt. The point of contact for the sample analysis of the filtrate, wash, and filtered solids samples is Mike Urie and Rick Steele.

6.1 Slurry Sample Physical Analysis

The slurry samples taken following the dewatering step will remain in A-cell for physical testing. These samples will be used for obtaining the following information: bulk density, supernatant density, particle size distribution, volume percent settled and centrifuged solids, and suspended solids loading. Each of these analyses will be done in duplicate. The viscosity of these samples was performed previously during testing in Section 5.0.

6.2 Chemical and Radiochemical Analysis

The following samples should be transferred to the SAL hot cells for prep work and analysis. There are three types of analyses performed on these samples. The analytical requirements for each group are shown in the table below.

- One sample from the dewatering step Analysis Group 1
- Two samples taken from the bottle labeled "AW-101 Filtrate" Analysis Group 1
- Two of the three samples taken from each of the washing steps Analysis Group 2
- Two samples taken from the bottle labeled "AW-101 Composite Wash"-Analysis Group 1

 Two of the three wet filtered solids samples taken following solids washing – Analysis Group 3

Analysis Group 1	Analysis Group 2	Analysis Group 3
Acid Digest	Acid Digest	Acid Digest
GEA	ICP-AES	KOH Fusion
Sr-90	Water the property of the contract of the cont	GEA
ICP-MS: Tc-99	will a state of the same of	Sr-90
Total Alpha	of street territories and all or	ICP-MS: Tc-99
ICP-AES	the Systematics to Clary Law	Total Alpha
TOC/TIC		ICP-AES
IC		TOC/TIC
	n Maria de la companione de la companion	IC

Data Sheet 3: Sample Log

The

2/18/99

Tank Number

AW-101 Entrained Solids

Test Number

Sample Number	Date	Time	Sample Type	Tare Welght (g)	Total Mass (g)	Mass of Sample (g)	Operators Initials
CUF-AW101-001		11:41	filtrate	8.104	35.681	27.577	KR
	2/17/99		filtrate	8.107	33.755	25.648	KR
-003	2/17/99	12:05	slurry	9.083	32-297	24.214	KR
-004	2/17/99	12:4	slurry	8.029	20.072	12,043	KR
	2/17/99	12:17	slume	8.116	20.605	12.489	, KR
	2/17/99	15:52	Barate	8.154	26.581	18.427	RIB from to
	3/17/99	15:52		8.082	27.915	19.833	FIB From 1
	2/18/99	14:00	wash 1	8.120	20,68	1256	TRB
	2/18/99	14:21	Wash 1	8.12	71.69	13.51	
	2/18/99	14:19	Wash1	8.149	21,45	13.31	- 13
~011	2/18/99	14:41	Wash a	8.150	19,20	11.05	-18
-012	4 8199	14:43	Wash 2	8.130	20.11	11.98	-178
-013	2/18/199	14:45	Wash 2	8.2	20171	12,51	
	21,8 99	15:40	Wash 3	8.152	20.15	12.00	WW.
-015	3/18/99	i5:04	Wash 3	8.129	19.62	11.5	
	7/18/99	15:06	Wash3	8.21	20.45	12.24	163
	2/18/99	15:12	islash Camarita	8.079	27.59	19.52	1/13
-018		15:14	Wash Composite Wash Composite	8.14	28.34	20:20	-138 60
	418/97	15:21	Solids	8.07 9	9.07	1.0	100
-020		15:25	Solds	818	9.349	1:14	
		15:32	Solids	8,309	7.279		
	diel J.	5.57	Solias	0,309	7819	1.51	10
	$\overline{}$						<u> </u>
		1					
		1					
		1					
		1-1					
		+	\				
		1	\				
			-				
	———A						
			-				
	i						
	,						<i>\</i>
							/
			I.				/
	4 3.						
							\
				+			
							
							· U

Appendix B: Chemical and Radiochemical Results

Project No. 29802 29953

Internal Distribution

Date

March 31, 1999

File/LB

To

K. Brooks

From

M. Urie

Subject

Carbon Analysis CUF AW-101 Series

The analysis of the CUF AW-101 samples submitted under ASR 5274 was done by the hot persulfate wet oxidation method, PNL-ALO-381, rev. 1. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95 °C for TOC, all on the same weighed sample, with TC being the sum of the TIC and TOC.

The samples were analyzed on March 26, 1999 and Table 1 below shows the results, rounded to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank. All results are reported in $\mu gC/g$ or $\mu gC/ml$, based on the weight or volume of sample, as applicable.

QC Narrative

The TIC standard is calcium carbonate and TOC standard is α -Glucose (the certificates of purity are attached). The standard materials were used in solid form for system calibration standards as well as matrix spikes. TIC and TOC percent recovery are determined using the appropriate standard (i.e., calcium carbonate for TIC or glucose for TOC).

The QC for the methods involves calibration blanks, system calibration standards, sample duplicates, and one matrix spike per matrix type (i.e., solids and liquids). The QC system calibration standards were all within acceptance criteria, with the average recovery being 96.7% for TIC and 91.7% for TOC. The calibration blanks were acceptable, averaging 1.4 μ gC for TIC and 8.8 μ gC for TOC.

The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. Matrix spike recoveries ranged from 95% to 114%, well within the acceptance criteria of 75% to 125%. The precision, estimated by the RPD (Relative Percent Difference) between duplicates, met acceptance criteria (i.e., RPD <20%) for all carbon analyses.

K. Brooks March 31, 1999 Page 2

Table 1: TIC, TOC, and TC Results

ALO Number	Sample ID	Wt. (g)	TIC* (ug/g)	TIC RPD	TOC* (ug/g)	TOC.RPD	TC* (ug/g)	TC RPD	Hot Cell DF
99-1149	CUF-AW101-20	0.0486	5780		16900		22700		1
99-1149 Dup	CUF-AW101-20	0.0506	5820	1	16100	5	21900	4	1
99-1150	CUF-AW101-21	0.0757	7320		16200		23500		1
99-1150 Mat. Spike	CUF-AW101-21MS	0.0545	109%		114%		112%		
	ero se ka tika	(ml)	(ug/ml)		(ug/ml)	A STATE OF STATE	(ug/ml)		10541500
99-1143 DB	DILUENT BLANK	2.00	220		55		275		5
99-1143 DB	DILUENT BLANK	2.00	210	5	45	n/a	255	8	5
99-1143	CUF-AW101-002	0.50	1960	1 905	2130	1 100 6	4090		5
99-1143	CUF-AW101-002	1.00	1890	4	1920	10	3810	7	5
99-1143 Dup	CUF-AW101-002	1.00	1840	SOT	1890	A I I I I I I I I I I	3730	ine Th.	5
99-1143 Dup	CUF-AW101-002	1.00	1840	0	1880	1	3720	0	5
99-1144	CUF-AW101-006	1.00	1760	fr 357	1710	200 1100 (511)	3470	isqui Per	5
99-1144	CUF-AW101-006	1.00	1800	2	1790	5	3590	3	5
99-1148	CUF-AW101-018	1.00	55	22 13500	2350	2 (3.86)	2410	1 15 25 75	5
99-1148	CUF-AW101-018	1.00	120	n/a	2270	4	2390	e los	5
99-1148 Mat. Spike	CUF-AW101-018MS	1.00	95%	as Aleri	103%	audy to t	99%		1420

^{*} Corrected for Hot Cell Dilution

RPD = Relative Percent Difference (n/a = not calculated since results <5xMDL)

RPD calculated from raw data; reported results have been rounded and may not provide the same RPD value

Approve:

Archive Information:

Files: C123-P-701.doc, C123-701.xls

ASR: 5274

L:\iag\carbon\C123-P-701.XLS

PNNL Radiochemical Processing Group: TOC/TIC/TC Calculations **Review** Report - Hot Persulfate Method PNL-ALO-381

Analyzed 03/25/99 Samples: K. Brooks

Analyzer M&TE: WA92	040 - 701			TIC STD: CaCO3 CMS-13285>>>	CMS-13285>>>	11.99% Carbon <<[C]	Procedure: PNL-ALO-38
Balance M&TE: 360-06-01-0;	01-023			TOC STD: Glucose	CSM-53219>>>	40.00% Carbon <<[G]	Archive File: C120-P-701.
Project No. 29953 K	k48480	11.11	ASR 5274				

Analyzer M&TE: WA92040 – 701 Balance M&TE: 360-06-01-023 Project No. 29953 K48480	WA92040 – 701 50-06-01-023 3 k48480	7	ASR 5274	4			TIC STD: CaCO3	CMS-13285>>>	11.99% Carbon <<[G] 40.00% Carbon <<[G]		Procedure; PNL-ALO-381 Archive File: C120-P-701,)	Procedure: PNL-ALO-381 Archive File: C120-P-701.XLS	
Standard and Bis Blanks:	ank Calculations Calibration blar Calibration blar Calibration blar Calibration blan	Standard and Blank Calculations	(u	TIC (ug) :	16.5 13.3 12.9 14.9	Average: SD: Pooled SD: MDL (ug):	14.4 ugC 1.6 ugC 2.16 ugC 6.5 ugC.		TIC (ug): 16.5 Average: 14.4 ugC TOC (ug): 53.1 Average: 52.8 ugcs 13.3 SD: 1.6 ugC 8.8 ugcs 12.9 Pooled SD: 2.16 ugC 8.8 ugcs 14.9 MDL (ug): 6.5 ugcs 17.3	53.1 64.6 43.6 49.9	Average: SD: Pooled SD: MDL (ug):	52.8 ugC 8.8 ugC 5.8 ugC 17.3 ugC	
Standards:	Calibration Star Calibration Star Calibration Star Calibration Star	Calibration Standard (start of batch) Calibration Standard (start of batch) Calibration Standard (middle of batch) Calibration Standard (end of batch)	ch) ch) vatch)	[A] Raw TIC (ug) 1245 1074 1365	[B] 14.4 14.4 14.4 14.4 Average Tic	[B] [D] Std BIK [ug] wf (g] 14.4 0.0104 14.4 0.0116 14.4 0.0118 werage TIC % Rec >>>>	71C WRec 98.6 94.8 96.8 96.6 96.7		[E] Raw <u>TOC [ug]</u> 1265 1242 906 1475	[F] BIK (Ug) 52.8 52.8 52.8 52.8 Average TO	(F) [H] Std Bik (ug) wf (g) 52.8 0.00335 52.8 0.00320 52.8 0.00320 52.8 0.00338 wenge TOC % Rec >>>	70C 7. Rec 90.5 92.9 91.9 91.6 91.7 <<[P]	

Sample Calculat	Sample Calculations ************************************	*************	*************	*************	*************	***********	**************		***************************************	*************	*************	***************************************			
		[I] Raw	2	[K] Sam	TIC	TIC	- lm/6n -	[M] Raw	N.	[O] Sam	TOC	TOC - ug/g		TC	7
ACL Number	Client Sample ID	TIC (ug)	BIK (ug)	Wt (g)	(nac/a)	RPD (%)	mdl 5xmdl	TOC (ug)	BIK (ug)	Wt (g)	(ngC/g)	RPD (%) mdi	_	(ngC/g)	RPD (%)
99-1149	CUF-AW101-20	286	14.4	0.0486	6273		188 939	806	52.8	0.0486	16894	364	_	22673	
99-1149 dupe	CUF-AW101-20	299	14.4	0.0506	5816		180 902	798	52.8	0.0506	16054	5 350		21870	4
99-1150-dupa &	CUF-AW101-21	550	14.4	0.0757	7316		121 603	1175	52.8	0.0757	16160	234	_	23476	
99-1150 MS	CUF-AW101-21	1489	14.4	0.0545	see below		167 837	2355	52.8	0.0545	46047	325	325 1623	46047	
				Vol (ml)	[mgC/m]					-1	[mgC/mi]			(ugC/ml)	
99-1143 DB	DILUENT BLANK	001	14.4	2.0000	44		5 23	73.4	52.8	2.0000	F	6	4	92	
99-1143 DB	DILUENT BLANK	96	14.4	2.0000	42	2	5 23	69.8	52.8	2.0000	6	n/a 9	4	51	80
99-1143	CUF-AW101-002	204	14.4	0.5000	392		18 91	248	52.8	0.5000	426	35	177	818	
99-1143	CUF-AW101-002	380	14.4	1.0000	378	4	9 46	406	52.8	1.0000	385	10 18	88	763	7
99-1143 dupe	CUF-AW101-002	370	14.4	1.0000	368		9 46	400	52.8	1.0000	378	18	88	746	
99-1143 dupe	CUF-AW101-002	370	14.4	1.0000	368	0	9 46	398	52.8	1.0000	376	1 18	88	744	0
99-1144	CUF-AW101-006	355	14.4	1.0000	352		9 46	367	52.8	1.0000	343	18	88	969	
99-1144	CUF-AW101-006	363	14.4	1.0000	360	2	9 46	382	52.8	1.0000	329	5 18	88	719	က
99-1148	CUF-AW101-018	52	14.4	1.0000	=		9 46	485	52.8	1.0000	471	18	88	482	
99-1148	CUF-AW101-018	38	14.4	1.0000	24	n/a	9 46	469	52.8	1.0000	454	4 18	88	478	-
99-1148 MS	CUF-AW101-018 ·	1203	14.4	1.0000	see below		9 46	1711	62.8	1.0000	1808	18	88	1808	
				•											

		[Q] Raw MS	[R] MS BIK	[S] Sam	(T) MS Sam	[V] Sample	Spike	[U] Spike	MS	_
ACL Number	Cilent Sample ID	Com	(nac)	(ngC/g)	Wt (9)		Wt (g)	OBI	% Recovery	
99-1150 MS	TIC	1489	14.9	7316	0.0545	399	0.0086	1036	108.7	일
	TOC	2355	55.8	16160	0.0545	881	0.0036	1432	113.5	700
	Total Carbon Recovery (TIC + TOC)	1	1	1	1		1	2468	111.5	7
				(ugC/ml)	Vol (ml)					n-
99-1148 MS	TIC	1203	14.4	24	1.0000		0.0106	1272	94.7	10
	100	1711	52.8	454	1.0000	454	0.0033	1320	102.6	700
	Total Carbon Recovery (TIC + TOC)							2592	98.7	2

Comments:

Matrix Spike Recoveries: Standard TOC % Recovery = ((E-F)/((G/100)*H))*10.6*100 Recovery = ((A-B)/((C/100)*D))*10⁻⁶*100 Sample TOC (ugC/g) = (M-N)/(O*P/100) Sample TIC (ugC/g) = (I-J)/(K*L/100)

Due to the precision carried in the spreadsheet, some results may appear to be slightly off due to rounding.

The Pooled SD is the averaged SD for a recent list of 12 sample batches. MDL is based upon the Pooled SD. MDL = 3 x pooled SD. If either the Sample or Duplicate are < 5x mdl, then the RPD is not calculated and displayed as "n/a".

TIC and TOC are measured; TC is the sum of the TIC and TOC results.

TIC % Recovery = (((Q-R)/(L/100))-S*T)*100/U TOC % Recovery = ((((Q^TC-R)^TV)(L/100))-S*T)*100/U TC % Recovery = ((((Q^{TC}-R^{TC}V)(L/100))-V^{TC})+(((Q^{TC}-R^{TC}V)(P/100))-V^{TC}))*100/U^{TC-10C}

Preparer/date:_ Reviewer/date:

Internal Distribution

329/4 File Mike Urie

Date

March 31, 1999

To

KP Brooks

From

James Bramson James

Subject

ICP/MS Analysis of Submitted Samples

Pursuant to your request, the samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham 99 Tc was used to generate the calibration curve. An independent Amersham 99 Tc standard was used as the continuing calibration verification (CCV) standard. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at $\pm 10\%$, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Approximate ¹⁰¹Ru concentrations are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0624 or Tom Farmer at 372-0700

BNFL Tc-99 (Acid Digestion)

March 29, 1999

3/31/99

The results are reported in µg analyte/g of original sample. The uncertainty of the results is estimated at ±10%.

Sample Number	Client Number	ICP/MS Number	Tc-99 μg/g	Ru ratio 101/102 (*0.541)	†Ru-101 μg/g
1%HNO3 1%HNO3		9324a_B1 9324a_B26	<0.01 <0.01	<u> KIBIMBBI</u>	5,018
99-1143-PB	Process Blank	9324a11	<0.01	1.5309	0.04
99-1143	CUF-AW101-002	9324a12	4.1±0.5	1.1329	1.5
99-1143-DUP	CUF-AW101-002	9324a13	3.90	1.1371	1.2
99-1144	CUF-AW101-006	9324a14	3.93	1.0520	1.1
99-1148	CUF-AW101-018	9324a15	0.116	1.1060	0.04
99-1148 + spike	CUF-AW101-018	9324a16	0.251	sagmy. 3	
Spike Recovery		te stand of the law	105%	BEN MINOME	
CCV results are rep	ported in ng/ml	YUU GITTE YUU		THE STATE OF	MINIST.
5ppb Tc-99		9324a_C9	5.02		
5ppb Tc-99	real describes a re	9324a_C28	5.05		

^{*} Natural 101 Ru/102 Ru ratio.

†Based on response from indium

Internal Distribution

329/4 File Mike Urie

Date

March 31, 1999

To

KP Brooks

From

James Bramson

Subject

ICP/MS Analysis of Submitted Samples

Pursuant to your request, the samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham 99 Tc was used to generate the calibration curve. An independent Amersham 99 Tc standard was used as the continuing calibration verification (CCV) standard. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at $\pm 10\%$, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Approximate ¹⁰¹Ru concentrations are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0624 or Tom Farmer at 372-0700

BNFL Tc-99 (Ni/KOH Fusion)

March 19, 1999

180mon 3/24/99

The results are reported in µg analyte/g of original sample. The uncertainty of the results is estimated at ±10%.

Sample Number	Client Number	ICP/MS Number	Tc-99 μg/g	Ru ratio 101/102 (*0.541)	†Ru-101 μg/g
1%HNO3 1%HNO3 1%HNO3	083 (0.49) %	9311a1 9311a14 9311a30	<0.1 <0.1 <0.1		
99-1149-PB	Process Blank	9311a9	<0.1	2.171	180
99-1149 99-1149 + spike Spike Recovery	CUF-AW101-020 CUF-AW101-020	9311a26 9311a29	144 214 106%	1.243	6100
99-1150 99-1150-DUP	CUF-AW101-021 CUF-AW101-021	9311a27 9311a28	145 146	1.266 1.151	5800 5700
CCV results are rep 1ppb Tc-99 5ppb Tc-99	ported in ng/ml	9311a11 9311a31	1.01 5.18		iagh sti

^{*} Natural 101 Ru/102 Ru ratio.

DATA REVIEW

Reviewed by: O.J. Farmerik
Date: 24 margg Pages: 10/1

[†]Based on response from indium

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis: ICPAES Analytical Report

Project: 29953
Client: K. P. Brooks

ACL Number(s): 99-01143 and 99-01150

Client ID: "CUF-AW101-002" and "CUF-AW101-021"

ASR Number: 5274

Total Samples: 10

Procedure: PNL-ALO-211, "Determination of Elements by Inductively Coupled

Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: D. R. Sanders

Analysis Date (Filename): 03/22/99 (A0520); 03/24/99 (A0521)

Instrument File: "ICP-325-405-1" for traceability to Calibration, Quality Control, Verification, and Raw Data.

M&TE Number:

ICPAES instrument -- WB73520

Mettler AT400 Balance -- Ser. No. 360-06-01-029

Reviewed by

Concur

Det. Limit (ug/mL)	Multiplier= ALO#= Client ID= Run Date= (Analyte)	5.0 99-1143-PB <u>ProcessBlk /</u> 3/22/99 (ug/mL)	ALO-128)	25.2 99-1143 @5 <u>CUF-AW101-</u> 3/22/99 (ug/mL)	- <u>002</u>	25.2 99-1143-DUP (<u>CUF-AW101-0</u> 3/22/99 (ug/mL)		25.1 99-1144 @5 <u>CUF-AW101</u> 3/22/99 (ug/mL)	- <u>006</u>	24.6 99-1145 @5 <u>CUF-AW101-</u> 3/22/99 (ug/mL)	009
0.025	Ag			-	1			_	†	-	
0.060	Al	[1.2]		15,300		15,900		15,200		1,010	4.761.05
0.250	As	-						[7.5]		_	
0.050	В	12.4		47.0	T	45.3	••••••	45.0	†	13.4	
0.010	Ba	-	100	-		-		_		-	1
0.010	Be	-		[1.3]		[1.3]		[1.3]		-	
0.100	Bi	-		-			***************			_	
0.250	Ca	-		[8.5]	Sec.	[8.7]		[8.6]		<u> </u>	
0.015	Cd	-		[2.3]		[2.3]		[2.2]			
0.200	Ce	-					••••••••				
0.050	Co	_		_				_			
0.020	Cr	_		54.3		56.2		54.1			7.
0.025	Си			[5.7]	······	[6.0]				[4.7]	••••••
0.050	Dy	_		-				[5.4]			
0.100	Eu	_								VI.	
0.025	Fe	[0.26]	***************************************	9.88							
2.000	K				4 2 -1	10.2		9.69		57-	- 4
0.050				21,400		22,100		21,100	1	1,510	1000
••••••	La	_									
0.030	Li									-	hear a
0.100	Mg			-				-	3.0	-	20231
0.050	Mn									-	••••••
0.050	Мо							-		-	
0.150	Na	16.3		134,000	***************************************	137,000	*****************	139,000		13,900	
0.100	Nd							-		-	
0.030	Ni			[5.3]		[5.5]		[5.3]			
0.100	Р			299		313		302		[23]	
0.100	Pb			34.6		36.0		35.6			
0.750	Pd			_		-				_	
0.300	Rh		***************************************	_				T			
1.100	Ru			=				-			
0.500	Sb			-		-		_		_	
0.250	Se	-		-		- 1		-		1-	
0.500	Si	[23]	214	[85]		176	121	[84]	• • • • • • • • • • • • • • • • • • • •	[27]	*****************
1.500	Sn	-		[71]		[74]		[73]	74	_	
0.015	Sr	-						_			
1.500	Te	-		" <u> </u>		-	***************************************	- 4	•••••	-	••••••
1.000	Th	-						_		_	
0.025	Ti	-		_				_	12 1	1-	
0.500	TI	_	***************************************	_		" -				-	
2.000	U			_						-	
0.050	v									1-	
2.000	w	_	•••••••••••••••••	[64]		[63]		[65]			
0.050	Y			-		-		[65]		H	
0.050	Zn			[7.3]		[7.6]					
0.050	Zr			[6.1]		[6.1]		[7.3] [6.2]		- -	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

²⁾ Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

^{3) &}quot;--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

	Multiplier= ALO#= Client ID=	4.9 99-1146 CUF-AW101	-012	4.9 99-1147 CUF-AW101	-015	5.1 99-1148 CUF-AW101-0	118	110.4 99-1149 @2 CUF-AW101-	20	126.3 99-1150 @2 CUF-AW101-	021
Det. Limit	Run Date=	3/22/99	Bessel	3/22/99	T .	3/22/99		3/22/99		3/22/99	1
(ug/mL)	(Analyte)	(ug/mL)	1000	(ug/mL)	100	(ug/mL)		ug/g		ug/g	
0.025	Ag	- 1	1	-	-			161		196	
0.060	Al	31.1	New York	18.8	200	253		70,900		93,600	
0.250	As	_	Territoria.			_		_			
0.050	В	10.2		14.3		10.5	***************************************	272		288	
0.010	Ва	-		-		-		384		515	
0.010	Be	-		_				[4.5]		[6.1]	100
0.100	Bi	-		_		-	***************************************	460		617	
0.250	Ca	- 1		-		[1.3]		16,100		21,400	ribs 7
0.015	Cd	- 3		-				478		641	dina .
0.200	Ce	170		-	1		***************************************	[210]		284	***************************************
0.050	Co	-		-		_		69.9		93.8	20.75
0.020	Cr	3.82		2.58		3.29		20,000		26,400	I II.
0.025	Cu	- 31		_		[0.22]	***************************************	290		393	T
0.050	Dy	- 1		_		-		[16]		[21]	11376
0.100	Eu	-		_		-		[12]		[16]	- 2
0.025	Fe	_		_		[0.18]	***************************************	31,100	***************************************	40,400	••••••••••••
2.000	K	[24]				363		[1,700]		[2,400]	100
0.050	La	-				- 1		402		537	
0.030	Li	- 1	l		••••••	- 1		[19]	***************************************	[26]	
0.100	Mg	-		_ 5		- N		4,380		5,800	
0.050	Mn	-		_		-		19,800		25,600	1000
0.050	Мо	-		-	1	-	•••••••	-		7m/=	
0.150	Na	4,130		2,340		5,560		85,100		114,000	1
0.100	Nd	- 7					.1199	460		622	
0.030	Ni	-		- 1		_		3,170		4,190	
0.100	Р	[0.61]				6.32		176		227	
0.100	Pb	-		-		[1.9]		1,550		2,030	T OH A
0.750	Pd .			- 11				W-EM		1 Ha-	37.7
0.300	Rh	-		-		1 Z = 18		[53]		[73]	
1.100	Ru	_				-		<u>-</u>		[140]	
0.500	Sb	-		_		_				[95]	
0.250	Se	-	_	_		- 4		[66]		[87]	
0.500	Si	[18]		[25]		[18]		33,400		53,900	
1.500	Sn	- 1		-		-		[250]		[320]	note that
0.015	Sr	-		_		- 7F		280		376	
1.500	Te	-		_		-		_			
1.000	Th	-		-		-		1,230		1,740	
0.025	Ti	-	*******************************	-		- 6		130		174	112
0.500	TI ·	_		-		= 1		_		_	
2.000	U			-,				73,500		98,600	100
0.050	<u>v</u>	-		_				[9.7]		[13]	Salt I
2.000	W	- 1		-		-		_			
0.050	Y	-		_		- [6]		[35]		[47]	4
0.050	Zn							240		322	
0.050	Zr	-		-	16.8	- 1		2,770		4,170	(

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

²⁾ Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

^{3) &}quot;--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis: ICPAES Analytical Report

Eight samples and duplicate were prepared by SAL using ALO-128/ALO-129 Acid Digestion of liquids and solids procedures. Approximately 5 mL for each liquid sample was digested and diluted to a final volume of 25 mL. Approximately 0.4 grams for each solid sample was digested and diluted to a final volume of 25 mL. Density of sample CUF-AW101-002 and CUF-AW101-006 (liquid) is 1.31 g/mL. Density of the other liquid samples was presumed to be approximately the same as distilled water.

Two samples (solids) were also prepared by SAL using ALO-115 KOH/Ni Fusion procedure. Approximately 0.2 grams of solids sample were fused and diluted to a final volume of 50 mL. Measurement results are reported in $\mu g/g$.

All samples were analyzed by ICPAES after appropriate dilutions were made. Analytes of interest include AL, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, Pb, Si, Ti, U, and Zn. Samples CUF-AW101-002, CUF-AW101-021 (acid digestion) and CUF-AW101-020 (KOH/Ni fusion) were post spiked. Samples CUF-AW101-020 and CUF-AW101-021 prepared by acid digestion appear to have a much higher concentration for all analytes than the concentration found in the KOH/Ni fusion prepared samples, particularly for Na. The reason for the apparent higher concentration may be due to the sample drying out in the hot cell. Approximately two weeks or more elapsed between preparation of the KOH/Ni fusion prepared samples (prepared 1st) and the acid digestion prepared samples. An attempt was made to normalize the Analyte concentration of the acid digested samples with respect to the KOH/Ni fusion prepared samples using Sodium concentration. However the normalization results were inconclusive, probably because Al and other analytes did not dissolve completely during the acid digestion procedure. The results from the KOH/Ni fusion prepared samples are more likely to represent the best data because, a) the fusion digestion procedure is more rigorous and, b) the solid sample had not had time to dry out.

Quality control samples include 5-fold serial dilution, relative percent difference between duplicate samples, post-spiked samples, QC check standards, high-end linear range check standards, and process blank. All QC samples analyzed were within tolerance limits specified in MCS-033 for all Analytes of interest except as follows.

--Serial dilution (5-fold) of samples CUF-AW101-020 and CUF-AW101-021 (acid digested solid samples) exceeded tolerance limit of 10%. Recovery of nearly all analytes of interest was greater than 10% and ranged between 10 to 17% for both samples (this may have been related to poor pipette performance).

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis: ICPAES Analytical Report

--Relative Percent Difference in Si concentration between sample and duplicate for CUF-AW101-002 exceeded tolerance limit of 20% (actual RPD was 70%). All other analytes of interest was less than 5% RPD.

--Post Spike recovery of Mo in sample CUF-AW101-002 (acid digestion of liquid) exceeded tolerance limit of 75 to 125%. Only about 14% of Mo were recovered. Post Spike recovery of Mo in sample CUF-AW101-021 was 101%. A reason for the discrepancy is not known.

See attached "ICPAES Data Report" for measurement results, detection limits, and etc. Concentration measurements other than analytes of interest are for information only.

Please note bracketed values listed in the data report are within ten times instrument detection limit. Those measurement values have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted otherwise.
- Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (eg. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 μ g/mL (0.5 per cent by weight).
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report Page 1 of 1

	Multiplier= ALO#=	506.1 99-1149-PB		526.6 99-1149 KOH] I @2	501.0 99-1150 KO F] H @2	501.0 99-1150 KOH] I DUP @2		1
	Client ID=	Proc.Blank		CUF-AW101	-020	CUF-AW101	-021	CUF-AW101-	021		
Det. Limit	Run Date=	3/24/99		3/24/99		3/24/99		3/24/99			
(ug/mL)	(Analyte)	ug/g		ug/g		ug/g		ug/g			
0.025	Ag	_		293		416		373		-	
0.060	Al	[80]	le mones	58,400	han exist o	58,200		59,900		-	
· 0.250	As	-		_	122	_	ne nation a		K s cuping	_	
0.050	В			[71]		[70]		[73]	411 212	-	
0.010	Ba	- 1		276		268	ESTRUCCIO DE	281		_	1
0.010	Be			NEED-US	do Lingui		plant kinds		Daniellie.	-	
0.100	Bi		1	[360]	(50.00)	[350]		[370]		mar t	
0.250	Ca	LOVINE LY	s a d blogs	12,600	the market	13,200	M. Jim V.	13,700	ig sak gilin		1
0.015	Cd	-		379		369		381	in it noo	410 T=	1
0.200	Ce	_		[190]		[190]		[190]		_	
0.050	Co	_	Narada d	[61]	de Helle Y	[59]	harmon with an	[65]	a translates		1
0.020	Cr	-	Louis No. 1	15,000	2	15,700		16,200		-	1
0.025	Cu	_		223		214		214		_	1
0.050	Dy	_		_		_		_	11 400 1000 100	-	1
0.100	Eu	_	1	-	138 1171 11753	_	ICE AND A	_	P. 1982	_	7
0.025	Fe	[66]	†	24,000		23,400		24,300	***************************************		1
0.050	La		1	304		298		309	10101-3025-0		
0.030	Li		†	_		_		_		-	
0.100	Mg	T-1002	Part in which	3,420	al bemiun	3,320	no ib space	3,470	r li-li Kall	101	1
0.050	Mn	[34]	No. 1675 N. 45	13,900	han briz di P	14,400	Luic Charle	14,900	ga salgasii il	81 _	1
0.050	Мо		1	-187_0.0		[28]	•	[27]		W	-
0.150	Na	[570]	De Amb a	55,600	describe arti	56,600	No chi tenzi	57,500	E salida e	fall -	1
0.100	Nd	-	-	[340]	1	[330]		[350]	5.00 M 10 10 10	1160 -	┪┈┈┈
0.100	Р	h	A Drawn	[260]		[290]		[280]	la incom	_	1
0.100	Pb	14.4		1,150		1,090		1,210		-	1
0.750	Pd	_	1				and the same of		and the second		1
0.300	Rh	_	1			_	1	700		-	1
1.100	Ru	_	•	_	••••••		-	_		_	-
0.500	Sb		1			_		_		_	1
0.250	Se	_	2012/2017			_				-	1
0.500	Si	_	1	61,400		62,200	1	64,300		-W	-
1.500	Sn		s remain	N-(00 ter-2 r)	District of		(43, s/F) 31		Then to g	-	1
0.015	Sr	5 87 E 10 6 S	a -depth is	199	with the test to	194	7 11 1101-1	. 203	Many of	000	1
1.500	Те	_	1			RESTAURANT OF THE SECOND		138 D 1 946 H		_	-
1.000	Th		1	[870]	17/	[860]		[890]		-	1
0.025	Ti			290	1	270	1	289	Karanidaii	- T	1 10 150
0.500	TI	 		_	••••••		••••••••••	_		_	
2.000	U	149, 410	es years	54,500	0.00	52,800	polici sacci	55,300	100 BOOK	-	
. 0.050	v			-	Ed a planta S	-				-	
2.000		_	†			- 10 T	-				-
0.050	Y			[30]	10.00	[30]		[31]	V 105-70	-	1
, 0.050				[180]	ng Joseph Wall	[200]	売取れず 12	[200]	The Third		1
- 0.050	Zn Zr			3,560	3617 - 4168	3,600	Kin bulleti	3,790	1-11-5-34		+
0.050	Lr	Jr Trings	181	3,500	I make the	3,000	I was a second	3,790	Marine agreed	-	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

²⁾ Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

^{3) &}quot;--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Samples CUF-AW101 Tank Sludge and Supernates Radiochemistry Analytical Results

Sample Preparation

Tank sludge and supernate liquid samples were analyzed from tank AW101. The solids were prepared for analysis in a hot cell according to procedure PNL-ALO-115 by fusing approximately 0.2 g with KOH + KNO₃ in a nickel crucible. The cooled fusion was dissolved in dilute HCl + HNO₃, then diluted to 50.0 mL for analysis. The supernate liquids were prepared for analysis in a hot cell according to procedure PNL-ALO-128/129 by digesting about 0.5 g with nitric acid and diluting the product to 25.0 mL. The radiochemical analyses that followed required further dilution in most cases.

Radiochemistry results are shown on the attached table along with 1-sigma total uncertainties. All results are reported on a uCi per gram weight basis. Samples labeled "duplicate" are independent analyses from separate aliquots of starting material in the hot cell; those labeled "replicate" are separate aliquots analyzed in the laboratory.

Gamma Emitters

The hot cell preparations were directly gamma counted following procedure PNL-ALO-450. Most of the gamma emission from these samples is from Cs-137. Other detectable gamma emitters were Co-60, Ru/Rh-106, Cs-134, Eu-154, Eu-155, and Am-241. The hot cell blanks had detectable activities that were much lower than the samples. All of the duplicate results agree within the expected uncertainties. Since gamma analyses do not involve chemical separations, no sample spiking is performed. Due to the high level of Cs-137 in these samples, it was not possible to detect all of the other analytes at the requested Minimum Reportable Quantity values.

Gross Alpha

For gross alpha measurements, aliquots of the hot cell preparations were evaporated on planchets for counting following procedures PNL-ALO-420 and 421. The sludge samples all had about 5.8 uCi/g of total alpha activity. By comparison with the GEA results, about half of this activity is due to Am-241. No alpha activity could be detected in the supernates. Duplicate results show good agreement and the blank and sample spike recoveries were acceptable.

Strontium-90

The Sr-90 analyses were conducted according to procedures PNL-ALO-476, 484, and 450 using a Sr-85 tracer to monitor the chemical yields. Due to the high beta activity seen in the samples, which turned out to be due to Cs-137, the samples were highly diluted prior to chemical separation. For the supernate samples, this dilution led to relatively high detection limits, slightly above the requested Minimum Reportable Quantity values. For the sludge samples, duplicate and replicate results were in good agreement at about 1600 uCi/g. Negligible Sr-90 activities were seen in the hot cell blanks. The blank and sample spike recoveries were acceptable.

JP Greenend 3-25-99 Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

99-1143 3/25/99

Client: KP Brooks

Cognizant Scientist:

L R Seemment

Date: 3/25/99

Concur:

I Trang-le

Date: 3/25/99

Measured Activities (uCi/g)

						Gamma	Energy	An	alyses	
ALO ID Client ID	Alpha Error %	Sr-90 Error %	Co-60 Error %	Sb-125 Error %	Ru/Rh-106 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
99-1143PB Process Blank	6.63E-5 7%	3.03E-2 3%	1.25E-5 14%	<3.E-5	<6.E-5	4.03E-5 6%	1.26E-3 2%	1.87E-5 22%	<3.E-5	<3.E-5
99-1143 CUF-AW101-002	<8.E-4	<3.E-1	<4.E-3	<3.E-1	<5.E-1	7.18E-2 13%	3.43E+2 2%	<2.E-2	<2.E-1	<2.E-1
99-1143DUP CUF-AW101-002	<8.E-4	<3.E-1	<4.E-3	<3.E-1	<5.E-1	6.35E-2 13%	3.49E+2 2%	<2. Ę- 2	<2.E-1	<2.E-1
RPD						12%	2%			
99-1143 Rep CUF-AW101-002		<3.E-1								
99-1144 CUF-AW101-006	<7.E-4	<3.E-1	<4.E-3	<3.E-1	<5.E-1	7.51E-2 11%	3.55E+2 2%	<2.E-2	<2.E-1	<2.E-1
99-1148 CUF-AW101-018	<8.E-5	2.44E-2 17%	5.03E-4 8%	<6.E-3	<1.E-2	1.69E-3 5%	8.52E+0 2%	<2.E-4	<3.E-3	<3.E-3
99-1149PB Process Blank	1.74E-3 11%	1.45E-1 5%	6.69E-5 22%	<3.E-4	5.73E-4 40%	1.54E-3 10%	3.66E-2 5%	4.05E-4 15%	2.46E-4 30%	3.49E-4 39%
99-1149 CUF-AW101-020	5.72E+0 2%	1.76E+3 3%	4.41E-1 4%	<9.E-1	<2.E0	<6.E-2	3.88E+2 2%	3.10E+0 3%	3.16E+0 7%	2.44E+0 19%
99-1150 CUF-AW101-021	5.78E+0 2%	1.56E+3 3%	4.18E-1 4%	1.14E+0 16%	<2.E0	1.22E-1 18%	4.13E+2 2%	3.11E+0 2%	3.85E+0 6%	2.85E+0 12%
9-1150 DUP CUF-AW101-021	5.95E+0 2%	1.66E+3 3%	4.35E-1 4%	8.67E-1 29%	<2.E0	1.01E-1 26%	4.10E+2 2%	3.05E+0 2%	3.62E+0 5%	2.98E+0 11%
RPD	3%	6%	4%	27%		19%	1%	2%	6%	4%
99-1150 Rep CUF-AW101-021	5.84E+0 2%									
Matrix Spike	109%	96%								
Blank Spike	107%	91%								
Blank	<4.E-4	<3.E-5								

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

WO/Project:

W48480/29953

Client:

K. Brooks

REVISION 1 (Change to Fluoride CUF-AW-101-006 & -018)

ACL Nmbr(s): 99-1143, -1144, -1148, -1149, -1150

Client ID: CUF-AW-101-002, -006, -018, -020, -021

ASR Nmbr 5274

Total Samples: 5 (3 liquid, 2 leached solids)

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion

Chromatography" (IC).

Analyst: MJ Steele

Analysis Date: March 11, 1999

See Chemical Measurement Center 98620: IC File for Calibration and

Maintenance Records.

M&TE Number:

IC instrument -- WD25214

Mettler AT400 Balance - Cal. No. 360-06-01-031

Analyst:

Approval:

ASR 5274-R1.doc Page 1 of 3

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Final Results:

Three liquid and two leach solids samples were analyzed by ion chromatography (IC) for inorganic anions as specified in ASR 5274. The liquid samples were diluted 5 fold during the preparation of the samples in the Shielded Analytical Laboratory (SAL) hot cells, and were diluted an additional 10-fold to 1000-fold to ensure that all anions were within the calibration range. Solid samples were leached using procedure ALO-103 resulting in an SAL dilution factor of approximately 50 for each sample. The leaches were diluted an additional 10-fold prior to analysis.

The results for the samples are presented in Table 1.

TABLE 1. CUF AW-101 --- Anion Results

SAMPLE ID	Client ID	F μg/ml	CI μg/ml	NO ₂ μg/ml	Br μg/ml	NO ₃ μg/ml	PO ₄ μg/ml	SO ₄ µg/ml	C2O4 µg/ml
99-1143-DB	DILUTION BLANK	< 0.25	< 0.25	< 0.5	< 0.25	1	17	1	< 0.5
99-1143	CUF-AW101-002	1,300	3,400	57,800	< 250	115,000	910	1,400	510
99-1143 Dup	CUF-AW101-002	1,300	3,400	55,300	< 250	110,000	1,400	1,300	520
	RPD	0	0	4	n/a	5	42	3	2
99-1144	CUF-AW101-006	1,200	3,300	56,500	< 250	112,000	910	1,300	520
99-1148	CUF-AW101-018	30	52	890	< 13	1,800	50	47	6,800
99-1148-MS (%Rec)	CUF-AW101-018MS	96%	92%	97%	96%	93%	92%	90%	99%
SAMPLE ID	Client ID	F μg/g	CI μg/g	NO ₂ μg/g	Br μg/g	NO ₃ μg/g	PO ₄ μg/g	SO ₄ µg/g	C ₂ O ₄ μg/g
99-1149 PB	PROCESS BLANK	< 0.5	< 0.5	< 1	< 0.5	2	< 1	2	< 1
99-1149	CUF-AW101-020	< 130	< 130	390	< 130	4,600	< 250	500	6,000
99-1150	CUF-AW101-021	< 120	< 120	430	< 120	4,900	3,200	460	6,200
99-1150 Dup	CUF-AW101-021	< 120	< 120	400	< 120	4,900	4,100	380	- 6,700
	RPD	n/a	n/a	7	n/a	E TILL	23	19	9

RPD = Relative Percent Difference (between sample and duplicate)

Q.C. Comments:

Following are results of quality control checks performed during IC analyses. In general, quality control checks met the requirements of the governing QA Plan, MCS-033.

<u>Working Blank Spike:</u> No working blank spikes were analyzed. The sample were diluted and leached in the SAL without spiking. Spiking was performed at the analytical stations and the diluted verification standards are used to assess blank standard performance.

ASR 5274-R1.doc Page 2 of 3

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

<u>Matrix Spiked Sample:</u> The matrix spike recovery for sample 99-148 provided acceptable recovery for all anions reported, with recoveries ranging from 90% to 99%. These recoveries are well within the 75% to 125% acceptance criteria.

<u>Duplicate</u>: Liquid sample 99-1143 and leached solid sample 99-1150 were analyzed in duplicate. Except for phosphate, the RPD's are within the acceptance criteria of 20%. The poor precision demonstrated on the liquid sample is considered to be due to the level of the phosphate measured in the analysis sample (i.e., only 2 times the reportable limit. For the solids, the poor phosphate precision is most likely due to sample heterogeneity (e.g., although within RDP acceptance criteria, the sulfate also demonstrates poor precision) or to phosphate precipitation.

System Blank/Processing Blanks: The eluent system blank, as well as the dilution blank and leach processing blank from the SAL, measured a small contribution from nitrate, phosphate, and sulfate; however, the levels are insignificant when compared to the reported results.

Quality Control Calibration Verification Check Standards: Mid-range verification standards were analyzed with the samples. For all reported results, the concentrations of all analytes of interest were recovered within the governing QA Plan acceptance criteria of \pm 10% for the verification standard, except for chloride. All chloride verifications standards recoveries were within 87% to 90%. Based on the verification standard recoveries, reported chloride results could be bias low by approximately 10%.

Notes:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis.
- 2) The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias is typically ± 15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions. Sample-specific precision and bias may be determined on each sample if required.

ASR 5274-R1.doc Page 3 of 3

Tank Material					AW 101 Dile	ited Feed (T)				
Matrix	9	upernatani				C	entrifuged Sc	dids (W	Vet)		
Dissolution		Acid Di	gest			KOH F	ısion		Acid Di	gest ⁽²⁾	
Lab ID	99-0648-pb	99-0644	99-0644-d	(3)	99-0646-рЪ	99-0646	99-0646-d	(2)	99-0646-ръ	99-8646	
Sample ID	Proc Blnk	Sample	Duplicate	RPD	Proc Blnk	Sample	Duplicate	RPD	Proc Blak	Sample	
Units	μg/mL	μg/mL	μg/mL	(%)	μ g /g	με/g	hz/2	(%)	µg/g	µg/g	
NFL List											
Ag	< 3	< 3	< 3		< 24	[90]	[89]		<4	81	
Al	<7	17,800	14,900	18	[91]	14,700	14,300	3	< 10	14,500	
Ba	< 1	<1 .	<1		< 9	[25]	[25]		< 2	24	
Ca	<31	< 32	< 32		< 235	[1,700]	[1,700]		< 41	1,160	
Cd	< 2	< 2	< 2		< 14	[34]	[35]		< 2	32	
Со	< 6	< 6	< 6		< 47	< 48	< 44		< 8	< 10	
Cr	< 2	61.1	51.1	18	< 19	1,640	1,600	2	< 3	1,610	
Cu	< 3	< 3	<3		< 24	< 24	< 22		< 4	[10]	
Fe	< 3	[5.1]	[4.3]		[91]	1,350	1,430	6	< 4	1,430	
K	< 247	25,200	20,800	19	n/a	n/a	n/a		< 326	17,200	
La	< 6	< 6	< 6		< 47	< 48	< 44		< 8	[28]	
Mg	< 12	< 13	< 13		< 94	[260]	[250]		< 16	314	
Mn	< 6	< 6	< 6		[56]	1,390	1,440	4	< 8	1,300	
Mo	< 6	< 6	< 6		< 47	< 48	< 44		< 8	< 10	
Na	[41]	163,000	134,000	20	[1,300]	128,000	127,000	1	[140]	128,000	
Ni	< 4	[5.4]	[4.2]		n/a	n/a	n/a		< 5	215	
Pb	< 12	[45]	[37]		< 94	[120]	[120]		< 16	[119]	
Si	[72]	[145]	[115]		< 470	[2,200]	[2,200]		[230]	2,300	
Ti	< 3	< 3	< 3		< 24	< 24	< 22		< 4	[7.6]	
U	< 247	< 257	< 259		< 1,882	[5,800]	[5,700]		< 326	5,400	
Zn	[7.6]	[14]	[13]		< 47	< 48	< 44		< 8	[16]	
Zr	< 6	[8.2]	[6.9]		< 47	[200]	[240]		< 8	351	
ther Analytes	Detected										
As	< 31	[104]	[84]		< 235	< 239	< 219		< 41	[79]	
Ce	< 25	< 26	< 26		< 188	< 191	< 175		< 33	< 40	
Nd	< 12	< 13	< 13		< 94	< 96	< 87		< 16	[29]	
P	< 12	353	293	19	< 94	[360]	[410]		< 16	501	
Sr	< 2	< 2	< 2		< 14	[24]	[24]		<2	[17]	
Y	< 6	< 6	<6	8 T.	< 47	< 48	<44		< 8	< 10	

⁽¹⁾ Overall error for reported results is estimated to be within $\pm 15\%$; however, results in brackets "[]" are within 10-times detection limit and error is anticipated to be greater than $\pm 15\%$.

⁽²⁾ Solids acid digestions results normalized to KOH fusion Na results. See narrative.

⁽³⁾ Relative Percent Difference (RPD) only calculated when both sample and duplicate exceed estimated quantitation limit (EQL).

ank Material	AN 107 Diluted Feed (1)													
Matrix		Superna	ant		Centrifuged Solids (Wet)									
Dissolution		Acid Dig	est			KOH Fu	noie			Acid Dig	est ⁽²⁾			
Lab ID	99-8644-pb	99-0645	99-0645-d	(3)	99-0646-pb	99-0647	99-0647-d	(3)	99-8646-pb	99-0647	99-0647-d			
Sample ID	ProcBlank	Sample	Duplicate	RPD	ProcBlank	Sample	Duplicate	RPD	ProcBlank	Sample	Duplicate	RPI		
Units	μg/mL	μg/mL	μg/mL	(%)	μg/g	μg/g	μ ε/ ξ	(%)	μ g/g	h&\&	μg/g	(%		
FL List														
Ag	< 3	< 3	<3		< 24	< 23	< 25		< 4	< 3	<3			
Al	< 7	4,040	3,820	6	[91]	7,550	7,450	1	< 10	7,140	7,650	7		
Ba	< 1	[4.1]	[4.0]		< 9	[44]	[44]		< 2	45	46	2		
Ca	[52]	461	416	10	< 235	[780]	[520]		< 41	359	377	5		
Cd	< 2	48	46	5	< 14	[37]	[36]		< 2	33	34	3		
Co	< 6	<4	< 4		< 47	< 46	< 51		< 8	< 6	<7			
Cr	< 2	149	142	5	< 19	725	718	1	<3	697	723	4		
Cu	< 3	[22]	[20]		< 24	< 23	<25		<4	[19]	[20]			
Fe	[5.6]	1,170	1,110	5	[91]	9,960	8,670	14	<4	8,260	8,690			
K	< 234	[1,300]	[1,240]		n/a	n/a	n/a	A	< 326	[670]	[647]			
La	< 6	[23]	[22]		< 47	[65]	[60]		<.8	108	112	1		
Mg	< 12	< 12	< 12		. < 94	< 93	< 102		< 16	[30]	[30]	Π		
Mn	< 6	108	106	2	[56]	4,910	5,130	4	< 8	4,920	4,989	1		
Мо	< 6	< 6	< 6		< 47	< 46	< 51		< 8	< 6	<7			
Na	[34]	176,000	171,000	3	[1,300]	134,000	139,000	4	[140]	134,000	139,000	1		
Ni	< 4	402	382	5	n/a	n/a	n/a		< 5	269	285	-		
Pb	< 12	263	249	5	< 94	[580]	[640]		< 16	755	784	-		
Si	< 59	< 45	< 44		< 470	< 463	< 509		[230]	[264]	[419]			
Ti	< 3	<3	<3		< 24	< 23	< 25		<4	[4.5]	[4.8]			
U	< 234	< 244	< 241		< 1,882	< 1,851	< 2,036		< 326	< 231	< 279			
Zn	[11]	[22]	[16]		< 47	< 46	< 51		< 8	64	[67]	Т		
Zr	< 6	[42]	[44]		< 47	[110]	[92]	2 4	< 8	197	206	1		
her Analytes	Detected													
As	< 29	[98]	[93]		< 235	< 231	< 254		< 41	[77]	[83]	Γ		
Ce	< 23	[27]	[26]		< 188	[190]	< 204		< 33	[212]	[219]			
Nd	< 12	[73]	[68]		< 94	[210]	[190]		< 16	311	326			
P	< 12	505	488	3	< 94	[500]	[520]		< 16	418	436	1		
Sr	< 2	[2.7]	[2.5]		<14	< 14	<15		<2	[6.2]	[6.3]			
Y	< 6	[11]	[11]		< 47	< 46	< 51		< 8	[31]	[32]			

⁽¹⁾ Overall error for reported results is estimated to be within ±15%; however results in brackets "[]" are within 10-times detection limit and error is anticipated to be greater than ±15%.

⁽²⁾ Solids acid digestion results normalized to KOH fusion Na results. See narrative.

⁽³⁾ Relative Percent Difference (RPD) only calculated when both sample and duplicate exceed estimated quantitation limit (EQL).

Tank Material		AW-101 Dijuted Feed											
Matrix			Superna	tant			Centrifuged Solids (Wet)						
Dissolution			Acid Di	gest					KOH Fa	KOH Fusion			
Lab JD	99-0648	-pb	99-06	44	99-0644	l-d	99-0646	-pb	99-06	16	99-064	6-d	
Sample ID	ProcBl	nk	Samp	le	Duplica	ıte	ProcBl	nk	Samp	le	Duplic	ate	
Units (%Error)	μCi/mL i	±13)	μCi/mL	(±1s)	μCl/mL (±1s)	μCVg (±	18)	μCVg (:18)	μCi/g (d	(alt	
Co-60 (GEA)	<3.E-4		< 1.E-2		< 1.E-2		< 5.E-2		<7.E-2		< 7.E-2		
Sr-90	1.69E-2	21%	< 5.E-1		< 5.E-1		1.60E-2	12%	1.41E+2	4%	1.60E+2	4%	
Cs-134 (GEA)	< 3.E-4		5.60E-2	15%	5.64E-2	12%	< 5.E-2		< 8.E-2		< 6.E-2		
Cs-137 (GEA)	8.67E-4	13%	2.50E+2	2%	2.10E+2	2%	2.25E-1	12%	1.96E+2	2%	1.87E+2	2%	
Eu-154 (GEA)	< 7.E-4		< 4.E-2		< 4.E-2		< 2.E-1		< 2.E-1		< 2.E-1		
Eu-155 (GEA)	< 7.E-4		< 4.E-1		< 4.E-1		< 2.E-1		< 5.E-1		< 5.E-1		
Pu-238	7.08E-6	15%	< 3.E-5		< 5.E-5		6.36E-5	30%	3.43E-2	9%	4.61E-2	7%	
Pu-239+Pu-240	2.49E-6	29%	1.65E-4	15%	1.37E-4	13%	7.42E-5	19%	2.48E-1	4%	2.56E-1	4%	
Am-241 (GEA)	< 7.E-4		< 4.E-1	H-12A	< 4.E-1	No.	< 2.E-1		< 5.E-1		< 5.E-1		
Am-241 (AEA)	9.12E-6	19%	1.16E-4	13%	8.94E-5	14%	< 6.E-7		2.53E-1	5%	2.43E-1	5%	
Cm-242	< 1.E-6		< 5.E-6		< 4.E-6		< 5.E-8		< 6.E-4		4.84E-4	459	
Cm-243+Cm-244	9.96E-6	18%	2.41E-5	31%	< 9.E-6		4.93E-7	23%	8.45E-3	14%	9.49E-3	129	
Total Alpha	< 3.E-4		< 1.E-2		< 1.E-2		<2.E-3		4.56E-1	9%	5.66E-1	7%	
Total Beta	4.48E-2	3%	2.75E+2	3%	2.25E+2	3%	5.03E-2	7%	4.80E+2	4%	4.78E+2	4%	
	μg/mL (:		μg/ml. (************	μg/mL (±		μ g/g (±	(2)	μ g/g (±		μ g /g (±	*******	
Total Cs			1.17E+1	2%	9.80E+0	2%			9.17E+0	2%		Ī	
Total U	2.20E-2	2%	3.32E+0	2%	3.12E+0	2%	2.86E-1	2%	5.42E+3	4%	5.46E+3	4%	
Tank Material							luted Feed						
Matrix			Supernat	ant	- Aus			Cen	trifuged So	ids (W	et)		
Dissolution			Acid Dig						KOH Fu	*******			
Lab ID	99-0644	pb	99-06-		99-0645	-d	99-0646	pb	99-06-	17	99-064	7-d	
Sample ID	ProcBb	ık	Samp	le	Duplica	te	ProcBb	ık	Samp	e	Duplic	ate	
Units (%Error)	μCl/mL (±1s)	μCi/mL (μCVmL (***************************************	μCVg (±	1s)	μCl/g (d	*********	μCVg (d		
Co-60 (GEA)	<3.E-4		1.11E-1	7%	1.15E-1	7%	< 5.E-2		< 9.E-2		< 9.E-2		
Sr-90	< 4.E-3	on the	7.72E+1	5%	7.46E+1	5%	1.60E-2	12%	1.90E+2	4%	1.93E+2	4%	
Cs-134 (GEA)	< 3.E-4		< 3.E-2	1	<3.E-2		< 5.E-2		< 8.E-2		< 9.E-2		
Cs-137 (GEA)	4.71E-4	27%	2.61E+2	2%	2.50E+2	2%	2.25E-1	12%	1.65E+2	2%	1.65E+2	2%	
Eu-154 (GEA)	< 5.E-4		6.20E-1	4%	6.03E-1	4%	< 2.E-1		1.44E+0	5%	1.17E+0	7%	
Eu-155 (GEA)	< 7.E-4		4.50E-1	16%	2.61E-1	25%	< 2.E-1		9.87E-1	14%	6.49E-1	219	
Pu-238	7.57E-6	21%	7.02E-3	15%	8.36E-3	9%	6.36E-5	30%	5.01E-2	7%	3.75E-2	9%	
Pu-239+Pu-240	4.06E-6	31%	3.08E-2	7%	3.20E-2	5%	7.42E-5	19%	1.68E-1	5%	1.33E-1	5%	
Am-241 (GEA)	< 5.E-4		5.66E-1	23%	2.30E-1	50%	< 2.E-1		2.49E+0	12%	1.68E+0	189	
Am-241 (AEA)	6.61E-6	18%	3.93E-1	5%	3.64E-1	5%	< 6.E-7		1.67E+0	5%	1.27E+0	5%	
	< 4.E-7	20,0	1.60E-3	21%	1.28E-3	28%	< 5.E-8		4.18E-3	16%	4.24E-3	119	
(m_/4/	3.43E-6	25%	1.19E-2	9%	1.26E-2	10%	4.93E-7	23%	3.67E-2	7%	2.52E-2	239	
Cm-242		1 40/0	1.1717-2	7/0		15,555	<2.E-3	23/6	2.14E+0		1.52E+0	5%	
Cm-243+Cm-244			4 43F-1	30%	4 50F-1	1 30/4							
Cm-243+Cm-244 TotalAlpha	< 1.E-4		4.43E-1	3%	4.50E-1	3%		70/		4%			
Cm-243+Cm-244	< 1.E-4 1.40E-2	3%	4.66E+2	3%	4.34E+2	3%	5.03E-2	7%	5.20E+2	4%	5.09E+2	4%	
Cm-243+Cm-244 TotalAlpha Total Beta	< 1.E-4	3%	4.66E+2 µg/mL (3% E1s)	4.34E+2 μg/mL (±	3% 1s)	5.03E-2 μg/g (±1	s)	5.20E+2 μg/g (±	4% 1s)	5.09E+2 μg/g (生	4% 1s)	
Cm-243+Cm-244 TotalAlpha	< 1.E-4 1.40E-2	3%	4.66E+2	3%	4.34E+2	3%	5.03E-2		5.20E+2	4%	5.09E+2	4%	

(1911). (P. 11).

Tank Material	AW-101 Diluted Feed													
Matrix		Supe	rnatant			Centrifuged Solids (Wet)								
Lab ID		99-0648-pb	99-0644	99-0644-d	(1)		99-0646-pb	99-0646	99-0646-4	(1)				
Sample ID		ProcBlnk	Sample	Duplicate	RPD		ProcBlnk	Sample	Duplicate	RPD				
Units	Type of Prep	μg/mL	μg/mL	μg/mL	(%)	Type of Prep	μ g/g	3/34	μg/g	(%)				
Tc-99 (ICP/MS)	Acid Digest	<0.02	5.88	5.12	14	KOH Fusion	0.1	20.9	20.9	0				
Tc-99 (ICP/MS)	Direct/Dilution	n/a	5.20	5.24	1	n/a	n/a	n/a	n/a					
TIC	Hot Persulfate	73	2,190	2,120	3	Hot Persulfate	n/a	27,500	n/m					
TOC	Hot Persulfate	<85	1,460	1,660		Hot Persulfate	n/a	20,100	n/m					
TC (sum)		73	3,650	3,780	4		n/a	47,600						
Fluoride	Direct/Dilution	<21	1000	660	40	Water Leach	<120	1,600	n/m					
Chloride	Direct/Dilution	<21	3,300	3,300	1	Water Leach	<120	2,700	n/m					
Nitrite	Direct/Dilution	<42	63,500	62,000	2	Water Leach	<240	41,500	n/m					
Bromide	Direct/Dilution	<21	<400	<380		Water Leach	<120	<1200	n/m	7247				
Nitrate	Direct/Dilution	<42	125,000	121,000	3	Water Leach	<240	80,900	n/m					
Phosphate	Direct/Dilution	<42	2,000	1,900	3	Water Leach	<240	<2300	n/m					
Sulfate	Direct/Dilution	<42	1,900	1,800	4	Water Leach	<240	<2300	n/m					
Oxalate	Direct/Dilution	<41	<800	<760		Water Leach	<240	42,000	n/m					
		mmole/mL	mmole/mL	mmole/mL				The spirit						
ОН	Direct/Dilution	n/d	3.02	3.09	2	n/m	n/m	n/m	n/m					
		pН	pН	pН										
pН	Direct			BLE FOR		n/m	n/m	n/m	n/m					
Tank Material					27. \$5454	ed Feed								
Matrix		Supe	rnatant	Ansı	<i>77</i> 1711	eu recu	Centrifuze	d Solids (W	⁷ et)					
Lab ID		99-0644-pb	99-0645	99-0645-d			99-0646-pb	99-0647	99-0647-d					
Sample ID		ProcBink	Sample	Duplicate	RPD		ProcBink	Sample	Duplicate	RPD				
Unias	Type of Prep	μg/mL	μg/mL	μg/mL	(%)	Type of Prep	µg/g	hā/ā	μg/g	(%)				
Tc-99 (ICP/MS)	Acid Digest	<0.02	4.40	4.23	4	KOH Fusion	0.1	3.62	3.92	8				
Tc-99 (ICP/MS)	Direct/Dilution	<0.05	4.09	3.98	3	n/a	n/a	n/a	n/a					
TIC	Direct/Dilution	76	16,400	16,200	1	Direct	n/a	18,200	17,500	4				
TOC	Direct/Dilution	<85	30,000	29,800	0	Direct	n/a	31,100	32,900	1				
TC (sum)	Direct/Dilution	76	46,400	46,000	1	Direct	n/a	51,200	50,400	2				
Fluoride	Direct/Dilution	<17	6,300	6,400	2	Water Leach	<120	4,500	4,300	3				
Chloride	Direct/Dilution	<17	1,400	1,400	2	Water Leach	<120	<1200	<1200					
Nitrite	Direct/Dilution	<35	51,100	51,600	1	Water Leach	<240	30,900	31,200	1				
Bromide	Direct/Dilution	<17	<490	<480		Water Leach	<120	<1200	<1200					
Nitrate	Direct/Dilution	<35	161,000	161,000	0	Water Leach	<240	111,000	111,000	0				
Phosphate	Direct/Dilution	⊲35	3,000	3,000	2	Water Leach	<240	<2400	<2400					
Sulfate	Direct/Dilution	<35	7,900	7,400	6	Water Leach	<240	7,000	7,000	1				
Oxalate	Direct/Dilution	34	1,300	1,300	1	Water Leach	<240	32,200	32,000	1				
Value	Daves Bridge	mmole/mL	mmole/mL	mmole/mL		Tutt Doubli	210	02,200	52,500					
ОН	Direct/Dilution	(2)	0.722	0.712	1	n/m	n/m	n/m	n/m					
OII	Direct Dilution		0.722	0.712		ID III	10 111	III III	III III					

⁽¹⁾ RPD only calculated when sample and duplicate results above reporting threshold for method's RPD calculation. (Calculated prior to rouding)

n/m

n/m

n/m

n/m

pН

Direct

pН

pН

n/a

pН

⁽²⁾ Not titration inflection point detected; no OH calculated.

n/a = not applicable to method; n/m = not measured due to applicable of method OR availability of sample material

Appendix C: Cross Flow Filtration Raw Data

Initial Clean Water Flux Measurements

DI Water--Pre-filtered to 0.2 micron

Average			3.947135			7.688796				10.06769
Filtrate Flux (m3/m2/dav)	4.22	3.74	3.88	7.92	7.24	7.91	10.36	9.32	10.17	10.43
Filtrate Flow Rate (mL/sec)	0.89	0.79	0.82	1.67	1.53	1.67	2.19	1.97	2.15	2.20
Filtrate Time (sec)	33.65	38.03	36.6	17.94	19.63	17.97	13.72	15.25	13.97	13.63
Filtrate Sample (mL)	30	30	30	30	30	30	30	30	30	30
Flow (gpm)	1.06	1.06	1.02	4 .8	4.9	4.95	4.1	4.09	4.05	3.95
Change in Pressure	0	7	-	က	7	က	7	7	1.5	2
Pressure out (psig)	30	28	30	26	24	54	20	69	20	2
Pressure in (psig)	30	30	31	29	26	22	72	71	71.5	72
Total Time Elapsed										

m3/m2/day
. 0.050833041
Std Dev
s/m
2.11
*

Permeability (m/day/bar)	0.466						0.341		m3/m2/day	m3/m2/day
Filtrate Flux (m/day)	1.817	1.535	1.555	1.420	1.417	1.403	1.311	Average	1.421	0.087
Temperature (C)	31.2	29.9	28.1	29.9	23.1	26.3	26.3			Std Dev.
Filtrate Flow Rat (ml./sec)	0.455	0.371	0.358	0.343	0.283	0.307	0.287	Average	0.344	
Filtrate Time (sec)	21.97	26.94	27.94	29.12	35.28	32.56	34.84			
Filtrate Sample (mL)		10	10	10	10	10	9		, gpm	s/w
Flow (gpm)	4.02	4.13	4.15	4.15	4.2	4.15	4.2	Average	4.17	3.691
Change n Pressure	က	က	က	3	က	3.5	4.5			
Pressure i	22	24	55	55	54	54.5	53.5		ar	
Pressure F in (psig) o	28	24	28	58	22	28	28	Average	3.87 bar	
Total Time P Elapsed in	0:00	0:11	0:50	0:30	0:39	0:47	0:57			
Change in Ta	0:00	0:11	60:0	0:10	60:0	0:08	0:10			

Condition 3

Condition 4

Permeability (m/day/bar)	0.859	0.805	0.690	0.640	0.665	0.679	0.653		" m3/m2/day	2 m3/m2/day
Filtrate F F F (m/day) (1.141	1.040	0.916	0.816	0.905	0.960	0.890	Average	0.897	0.052
Temperature (C)	23.9	24.5	25.5	25.4	24.2	24.7	25.8			Std Dev
Filtrate Flow Rate (mL/sec)	0.233	0.217	0.196	0.174	0.187	0.201	0.192	Average	0.200	
Filtrate Time (sec)	42.84	46.18	51	57.37	53.53	49.78	52.06			
Filtrate Sample (mL)		9	9	10	9	9	9		10000	s/m (
Flow (gpm)	2.23	2.25	2.27	2.26	2.2	2.25	2.27	Average	2.25	1.96
Change In Pressure	1.5	0.5	1.5	-	0.5	-	0.5			
	18.5	18.5	18.5	18	19.5	20	19.5		bar	
Pressure Pressure in (psig) out (psig)	20	19	20	19	20	77	20	Average	1.35 b	
Fotal Time F Elapsed ii	0:00	0:10	0:22	0:32	0:44	0:52	1:00	1		
Change in Time (hr:min)	0:00	0:10	0:12	0:10	0:12	0:08	0:08			

1:12

0:57

0:43

0:28

0:14

0:00

Time (hr:min)

m/m				0.484			0.438		3 m3/m2/day	7 m3/m2/day
Filtrate Flux (m/day)	1.577	1.316	1.218	1.284	1.213	1.215	1.185	Average	1.223 m3,	0.037 n
Temperature (C)	25.3	25.6	22.8	25.1	26.1	22.7	25.6			Std Dev.
Filtrate Flow Rate (mL/sec)	0.336	0.283	0.242	0.272	0.264	0.240	0.254	Average	0.270	
Filtrate Time (sec)	29.78	35.38	41.38	36.78	37.85	41.6	39.3			
Filtrate Sample (mL)	9	9	9	9	9	9	9		. gpm	s/m ·
Flow (gpm)	4.2	4.2	4.22	4.2	4.2	4.31	4.19	Average	4.22 (3.74
Change in Pressure	က	က	က	က	2.5	3.5	3.5			
Pressure out (psig)	37	37	36	37	38.5	37.5			bar	
Pressure in (psig)	40	40	39	40	41	41	4	Average	2.68 bar	
	0:00	0:11	0:50	0:30	0:40	0:51	1:01			
Change in Time (hr:min)	0:00	0:11	60:0	0:10	0:10	0:11	0:10			

Permeability (m/day/bar)	0.508	0.230	0.407	0.40	0.395	0.373	0.371		m3/m2/day	0.064368 m3/m2/day
Filtrate Flux	1 89	9.7	5.5	2.5	148	38	1.39	Average	1.45	0.064368
Temperature (C)	25.4	26.5	23.2	24.4	26.8	22.9	24.2			Std Dev.
Flow Rate (mL/sec)	0.404	0.353	0.304	0.312	0.328	0.275	0.286	Average	0.323	
Time (sec)	24.78	28.34	32.9	32.06	30.47	36.41	34.94			
Sample (mL)	10	10	9	9	1	10	10		gpm	s/w
	3.13	3.13	3.13	3.13	3.13	3.1	3.11	Average	3.12 gpm	2.761434 m/s
Change in Flow Pressure (gpm	2	2	7	2	1.5	1.5	1.5			
Pressure (out (psig) F	53	53	53	53	53.5	23	53.5		ar	3
Pressure F in (psig) o	22	55	55	55	22	54.5	22	Average	3.726603 bar	
Time in Elapsed ii	0	10	20	30	40	20	09			

Condition 13

Condition 14

De-Watering Condition

Condition 2.2

Total Time Elapsed

ž.0																			
Permeability (m/day/bar)	0.276	0.215	0.209	0.206	0.172	0.194		0.948 m3/m2/day	0.084 m3/m2/day										
Filtrate Flux (m/dav)	1.324	1.016	1.015	0.979	0.818	0.914	Average	0.948	0.084				T			1			
Temperature (C)	22.3 27.5	25.2	23.2	27.4	27.9	23.5			Std Dev.	P = 4.8 bar			•						- 09
Filtrate Flow Rate (mL/sec)	0.259	0.216	0.204	0.221	0.187	0.185	Average	0.218		1		•		×					40
Filtrate Time (sec)	38.62	46.37	49.12	45.25	53.41	54.06				xial = 2.8									Time (min)
Filtrate Sample (mL)	5 5	10	9	10	10	10		gpm	s/m	#2.4 - Target Conditions Vaxial = 2.8 m/2									20 Tir
Flow (gpm)	3.22	3.2	3.2	3.18	3.22	3.26	Average	3.212 gpm	2.843 m/s	rget Con				•					81 &
Change in Pressure	00	7	2.5	7	2	2.5				#2.4 - Ta									
Pressure (out (psig)	68.5	67.5	69	99	99	29		Jar		Test 0.300 _T	0.250		0.200	0.150	3	0.100	0.050	0000	
Pressure Fin (psig) c	70.5 69	69.5	71.5	2	20	69.5	Average	4.76 bar	8 kg) 	\$/ 7	w)	əte	lowra	4		
ed iii b	0 0	20	30	40	20	9													

Condition 2.5

Final Nitric Acid Rinse and Clean Water Flux

Average	b					11.15923				5.749672			4.476309
Filtrate Flux (m/day)	15.12	44.27		23.68	5.99	3.81	7.66	5.10	5.43	4.80	5.12	4.27	4.04
Filtrate Flow Rate (mL/sec)	3.19	9.35		5.00	1.26	0.80	1.62	1.08	1.15	1.01	1.08	06.0	0.85
Filtrate Time (sec)	9.4	3.21		9	7.91	12.44	6.18	9.28	8.72	9.87	9.25	11.1	11.72
Filtrate Sample (mL)	30	30		30	10	10	10	10	10	10	10	10	10
Flow (gpm)	ΣZ	ΣZ		4.7	4.5	4.7	2.5	2.6	2.6	2.6	1.3	1.7	1.9
Change in Pressure	7	7		7	2.5	2.5	-	0.5	~	0.5	0	-	-
Pressure out (psig)	30	72		27	29.5	27.5	55	55	22	55	70	70	70
Pressure in (psig)	32	74	filtered)	59	32	30	26	55.5	26	55.5	2	71	71
Total Time Elapsed	10	20	ed, but not	0	7	52	0	9	15	20	0	9	70
Target Test Conditions	Nitric Acid Wash	(prefiltered to 0.2 micron)	Fourth Water Wash (distilled, but not filtered)	Flow =4.6 gpm			Flow =2.6 gpm				Flow =1.7 gpm		

Appendix D: AW-101 Simulant Composition

Table D1. AW-101 5M Na Solution

Component	FW,	Molarity	g/L	g for 10L
EDTA	292.24	3.70E-03	1.081	10.813
Citric Acid	210.14	3.70E-03	0.778	7.775
Na₃HEDTA'2H ₂ O	344.00	3.70E-03	1.273	12.728
Na ₃ NTA	257.10	3.70E-03	0.951	9.513
Na Gluconate	218.00	3.70E-03	0.807	8.066
Na ₂ Iminodiacetic	177.07	3.70E-03	0.655	6.552
Cd(NO ₃) ₄ H ₂ O	308.00	0.00E+00	0.00E+00	0.000
Fe(NO ₃) ₃ '9H ₂ O	404.02	5.00E-05	2.02E-02	0.202
Mg(NO ₃) ₂ 6H ₂ O	256.40	1.50E-03	0.385	3.846
Mn(NO ₃) ₂ , 50%	8.46	6.63E-05	0.561 mL	5.609 mL
MoO ₃	143.95	2.86E-04	4.12E-02	0.412
Ni(NO ₃) ₂ 6H ₂ O	290.80	1.33E-04	3.87E-02	0.387
SiO ₂	60.08	2.93E-03	0.176	1.760
BaNO ₃	261.38	1.33E-04	3.48E-02	0.348
Ca(NO ₃) ₂	236.16	4.13E-04	0.098	0.975
$Sr(NO_3)_2$	211.65	1.30E-05	2.75E-03	0.028
RbNO ₃	147.47	1.00E-05	1.47E-03	0.015
CsNO ₃	194.92	6.40E-05	1.25E-02	0.125
NaNO ₃	85.00	0.00E+00	0.00	0.000
KNO ₃	101.11	0.00E+00	0.00	0.000
LiNO ₃	69.00	5.51E-04	0.04	0.380
KOH	56.11	4.30E-01	24.13	241.273
NaOH	40.00	3.89E+00	155.60	1556.000
Al(NO ₃) ₃ '9H ₂ O	375.15	5.06E-01	189.83	1898.259
Na ₂ CO ₃	105.99	1.00E-01	10.60	105.990
Na ₂ SO ₄	142.05	2.36E-03	0.34	3.352
Na ₂ HPO ₄ '7H ₂ O	268.07	1.73E-03	0.46	4.638
NaCl	58.45	6.93E-02	4.05	40.506
NaF	41.99	1.10E-02	0.46	4.619
NaNO ₂	69.00	7.90E-01	54.51	545.100

Appendix E: Density and Solids Concentration Raw Data

diluted feed physical.xls 1/26/99 PR Bredt
 Sample
 Mass, g
 Volume, mI
 Density
 Average
 RPD
 Volw Settled Solid
 Avolume, mI
 Vol
 Vol<

1.5%

RPD

	Settled Supe	rantant					Centrifuge	d Superna	tant				
aldu	Mass, g	Volume, ml	Density	Average	RPD		Mass, g		Volume, ml Density	Density	Average	RPD	
4-107 A	6.741	4.90	1.38		1.32	8.8%		10.026	7.65	1.311			0.5%
AN-107 B	5.165	5 4.10	1.2	9				11.063	8.40	1.317			
N-101 A	6.745	5.25	1.2	80	1.28	%9.0		10.881	8.30	1.311	1.310	0	0.2%
-101 B	6.642	5.20	1.28	8				11.121	8.50				

17	Colina											l	Ī
2	2000												
luid,	Ē	iqiud, g	Solids, g	wt% settled		Average	RPD		Density	Ave	werage RPD	SPD	
	7.73	10.1308471	0.7631529		7.0%	6.8%		5.9%	÷	47	1.39		11.9%
	8.4	8.4 11.063 0.782	0.782		%9'9				~	30			
	8.26	10.8285614	0.6024386			6.3%		31.8%	-	12	1.35 35.1%	(,)	35.1%
	8.08	10.5714918	0.8275082		7.3%				1.	1.59			

	Centrifuged	Solids															
10	Mass, g	Volume, ml Vol%	%lo/	Average	je Je	RPD		wt%		Average	RPD	å	nsity	Average		RPD	
V	0.48	9 0.26	9:			3.1%	1.3%		4.5%	4.5% 1.9% 1.88	Ţ	%6.1	1.8	. 8	1.91	2.9%	
N-107 B	0.542			3.1%					4.6%				25.	4			
4	80		8	2.0%	_	1.7%	37.8%		1.8%	2.1%		31.4%		**	***	M-0.59	-
8	0.282	_	12 1	1.4%					2.5%				Š	u.			Too liftle solids

						AVY (01 A has problem, but AW-101 AL looks good			
		41.7%		42.4%		38.3%		39.7%	
Wt% Solids	Superantan Undissolved Total	0.56%		0.67%		G 23%		0.25%	
	Superantan	0.876		0.854		4.136		0.897	
	Water	0.495	0.565	0.483	0.566	0.789	0.598	0.539	0.601
Vt Fraction	Dry Solids W	0.505	0.435	0.517	0.434	1870	0.402	0.461	0.399
		0.247	4.291	0.280	4.740	0000	4.315	0.130	4.393
>	otal	19.992	20.960	20.208	21.449	2000	20.954	20.108	21.049
<u> </u>	Sample T	0.489	9.865	0.542	10.921	0.206	10.737	0.282	11.001
	Total	20.234	26.534	20.470	27.630	991.02	27.376	20.260	27.657
	Tare	19.745	16.669	19.928	16.709	19.943	16.639	19.978	16.656
	Sample	AN-107 A	AN-107 AL	AN-107 B	AN-107 BL	AW-101 A	AW-101 AL	AW-101 B	AW-101 BL

	Density, g/ml	E		Vol% Solids			Wt% Solids				
	Slurny	Superna	Supernatant Centrifuged Solids Settled		Centrifuged		Settled	Centrifuged Total	_	Judissolved	Viscosity, cP
AN-107			1.88	3.3%)	3.2%	7.0%	4.5%	41.7%	0.6%	
AN-107 Dup		1.32	.317 1.94	6.7%		3.1%		4.6%	42.4%		
AW-101		30 1.	.311	6.1%		2.0%		1.8%	38.3%		_
AW-101 Dup	-	1.33 1.	.308	6.0%		1.4%	7.3%	2.5%	39.7%	0.3%	6.8
			Tool ittle								l

Appendix F: Rheograms for AW-101 and Standards

7 6 ° (9) YisoosiV 20 48 16 4 7 9 400 350 300 250 Shear Rate (1/s) 200 --- Shear Stress 150 ----Viscosity 100 20 3.00 2.50 2.00 1.50 0.00 1.00 0.50 Shear Stress (Pa)

Figure 3. AW-101 Diluted Feed Duplicate

S S S S Viscosity (cP) 20 35 45 6 9 15 2 350 300 250 200 Shear Rate (1/s) 150 - Shear Stress ----Viscosity 100 20 ď 1.8 1.6 0.8 9.0 1.2 0.4 0 Shear Stress (Pa)

Figure 5. AW-101 Dewatered Slurry, First Analysis

8 8 8 8 Viscosity (cP) Shear Rate (1/s) -- Shear Stress --- Viscosity 2.5 Shear Stress (Pa) 0.5

Figure 6. AW-101 Dewatered Slurry, Second Analysis

S S S S S Figure 7. AW-101 Dewatered Slurry, Sample 2, First Analysis Shear Rate (1/s) -- Shear Stress ---- Viscosity 2.5 Shear Stress (Pa) 0.5

S & S S Viscosity (cP) Figure 8. AW-101 Dewatered Slurry, Sample 2, Second Analysis Shear Rate (1/s) --- Shear Stress --- Viscosity Shear Stress (Pa) 2.5 0.5

Appendix G: Key Personnel Affiliated with LAW Entrained Solids Removal Task

Key Personnel in the Entrained Solids Ultrafiltration Task

Name	Responsibility	Telephone/email
Eugene Morrey	Battelle Project Manager	(509) 376-1982 eugene.morrey@pnl.gov
Dean Kurath	Battelle Project Engineer	(509) 376-6752 dean.kurath@pnl.gov
Kriston Brooks	Ultrafiltration Task Manager, Filtration and CUF Testing	(509) 376-2233 kriston.brooks@pnl.gov
Paul Bredt	Rheology and Physical Properties Measurement	(509) 376-3777 paul.bredt@pnl.gov
Joel Tingey	Particle Size Distribution Measurement	(509) 376-2580 joel.tingey@pnl.gov
Stacey Hartley	Statistical Analysis	(509) 372-4945 stacey.hartley@pnl.gov
Mike Urie	Chemical and Radiochemical Analysis	(509) 376-9454 mike.urie@pnl.gov
Ken Rappe	CUF Design and Testing	(509) 372-3918 ken.rappe@pnl.gov
Gita Golcar	CUF Design and Test Plan Preparation	(509) 372-1967 gita.golcar@pnl.gov
Lynette Jagoda	CUF Testing	(509) 376-9951 lynette.jagoda@pnl.gov
Rick Steele	Hot Cell Operations	(509) 372-0038 rick.steele@pnl.gov

Appendix H: Particle Size Distribution Raw Data

Particle Size Distribution Standards Results

The instrument performance was checked against a range of NIST traceable standards from Duke Scientific Corporation. These standards are polymer microspheres dispersed in 1 mM KCl. Results are shown in Table G1. These standards were run prior to analysis of the sample and duplicate. The percentile shows the given percent of the volume (or weight if the specific gravity for all particles is the same) that is smaller than the indicated size. The mean diameter of the volume distribution (mv) represents the center of gravity of the distribution and is weighted by the presence of coarser particles.

Table G1. Calibration Standards

. 4	U	PA	
	96 nm	304 nm	2013 nm
	Lot 16339	Lot 15928	Lot 15992
Percentile	Size (nm)	Size (nm)	Size (nm)
10	81	251	1563
50	95	304	2083
90	125	368	3130
mv	99	307	2250
	X-:	100	
	2.013 μm	50.4 μm	301 μm
	Lot 15992	Lot 19213	Lot 19136
Percentile	Size (µm)	Size (µm)	Size (µm)
10	1.41	39	267
50	1.73	48	309
90	2.19	59	347
mv	1.77	48	308

Particle Size Distribution Raw Data for AW-101 Using the Microtrac X-100

	Pa	rticle S	ize Analy	sis		101-AW-PS	D .			e: 04/ e: 10:		Meas # Pres #:	00047
01-AW Sim 0 ml/sec	nulant Supern					Summary mv = 4.420 mn = 1.65 ma = 3.060 cs = 1.96 sd = 2.65	3 20% 3 30% 1 40%	= 1.562 = 2.061 = 2.561 = 3.132	entiles 2 60% = 4 1 70% = 5 1 80% = 6 2 90% = 8 7 95% = 9	.770 .715 .713		Vol% 58% 42%	Width 4.167 1.463
%PAS	S									2		%	CHA
100.0			11111								TIT	Ш	20.0
													40 A
90.0								Ш			TIT	TIIT	18.0
000					//							$\coprod \coprod$	46.0
80.0								HIII					16.0
					11111								446
70.0					$f \cap f \cap f$								14.0
60.0	1							TI		A	TIT	TIT	12.0
					123								44
50.0									24 1				10.0
				201 20									
40.0								1111				 	8.0
30.0	71.												6.0
									5 - 5				
20.0			FS FS					1111			111	††† †	4.0
10.0								1.111	5				2.0
v_i, v_i, v_i						1	31/1	$\mathbf{i} \mathbf{I} \mathbf{I} \mathbf{I}$					
0.0	+	-1-1-1	1111	**	LLITT	1		1111				1111	0.0
/. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100		1.000		10.0 Size (mic			10	0.0			100	
	%PASS	%CHAN	SIZE				6PASS	%CI	HAN SI	ZE	%FA	SS	%CHAP
SIZE		0.00	9.250		.94		<u> </u>				*****		
	100.00			88.52 10	0.12		-4.1						
04.0 92.0	100.00	0.00	7.778	70.40	2 20	and the state of the							2.0
04.0 92.0 197.8	100:00 100:00	0.00	€.541	78.40 10	0.58					· , .		10.00	n
04.0 92.0 97.8 18.6	100:00 100:00 100:00	0.00	6.541 5.500	78.40 16 67.72 9 58.45 8	2.18								
04.0 92.0 197.8 118.6 152.0	100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00	6.541 5.500 4.625 3.889	78.40 16 67.72 9 58.45 8 50.27 8	.27 .18 .15								
04.0 92.0 97.8 18.6 52.0 96.0	100:00 100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00 0.00	6.541 5.500 4.625 3.889 3.270	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8	2.27 2.18 3.15 3.58								
04.0 92.0 197.8 118.6 152.0 196.0 148.9	100:00 100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00 0.00 0.00	6.541 5.500 4.625 3.869 3.270 2.750	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7	2.27 2.18 3.15 3.58 3.44								
04.0 92.0 97.8 118.6 952.0 996.0 448.9 109.3 176.0	100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	6.541 5.500 4.625 3.869 3.270 2.750 2.312 1.945	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9	3.27 3.18 3.15 3.44 7.45 3.20								
04.0 92.0 97.8 18.6 52.0 96.0 48.9 09.3 76.0 48.0	100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.869 3.270 2.750 2.312 1.945 1.635	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9	3.27 3.18 3.15 3.58 3.44 7.45 3.20 5.01								
04.0 92.0 97.8 18.6 \$2.0 96.0 48.9 09.3 76.0 48.0 24.5	100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.869 3.270 2.750 2.312 1.945	78.49 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9 11.45 5 6.44 3	3.27 3.18 3.15 3.44 7.45 3.20								
04.0 92.0 97.8 18.6 \$2.0 96.0 48.9 09.3 76.0 48.0 24.5 04.7 8.00	100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972	78.49 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9 11.45 5 6.44 2.82 2 0.80 9	3.27 3.18 3.15 3.44 7.45 3.20 5.01 3.62 2.02								
04.0 92.0 197.8 118.6 352.0 296.0 248.9 209.3 176.0 143.0 124.5 104.7 38.00 74.00 32.23	100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00 100:00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.889 3.270 2.750 2.312 1.945 1.635 1.375 1.156 0.972 0.818	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9 11.45 5 6.44 3 2.82 2 0.80 0 0.00 0	2.27 2.18 3.15 3.44 5.20 5.01 5.62 2.02 2.02								
04.0 92.0 197.8 118.6 352.0 296.0 248.9 209.3 176.0 148.0 124.5 104.7 38.00 74.09 52.23 52.33	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972	78.49 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9 11.45 6 6.44 3 2.82 0 0.80 0 0.00 0	3.27 3.18 3.15 3.44 7.45 3.20 5.01 3.62 2.02								
704.0 592.0 197.8 118.6 352.0 296.0 248.9 209.3 176.0 148.0 124:5 104.7 38.00 74.00 32.23 52.23 54.00 37.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.166 0.972 0.818 0.688 0.578 0.486	78.49 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9 11.45 6.44 3 2.82 0.80 0 0.00 0 0.00 0 0.00 0 0.00 0	3.27 3.18 3.15 3.44 3.45 5.20 5.01 3.62 2.02 0.00 0.00								
SIZE 704.0 592.0 497.8 418.6 352.0 296.0 248.9 209.3 148.0 124.5 104.7 38.00 74.00 62.23 52.33 44.00 37.00 31.11	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.869 3.270 2.750 2.312 1.945 1.635 1.376 1.166 0.972 0.818 0.688 0.578 0.466 0.409	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 8 11.45 5 6.44 3 2.82 2 0.80 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	3.27 3.18 3.15 3.44 3.45 3.20 5.01 5.62 2.02 0.00 0.00 0.00								
704:0 592:0 497:8 418:6 352:0 296:0 248:9 209:3 176:0 148:0 124:5 104:7 38:00 74:00 32:23 52:23 44:00 37:00 31:11	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972 0.818 0.688 0.578 0.486 0.409 0.344	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 8 11.45 5 6.44 3 2.82 2 0.80 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	3.27 3.18 3.15 3.44 3.45 5.20 5.01 3.62 2.02 0.00 0.00								
704:0 592:0 497:8 418:6 352:0 296:0 248:9 209:3 176:0 148:0 124:5 104:7 38:00 74:00 37:00 37:00 31:11 26:16 22:00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.869 3.270 2.750 2.312 1.945 1.635 1.375 1.166 0.972 0.818 0.688 0.578 0.486 0.409 0.344 0.289 0.243	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9 11.45 5 6.44 2.82 2 0.80 0 0.00 0 0	3.27 3.18 3.15 3.44 3.45 5.20 5.01 3.62 2.02 0.00 0.00 0.00 0.00 0.00								
704:0 592:0 497:8 418:6 352:0 296:0 248:9 209:3 176:0 148:0 124:5 104:7 88:00 74:00 62:23 52:33 44:00 37:00 31:11 26:16 22:00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	6.541 5.500 4.625 3.869 3.270 2.750 2.312 1.945 1.635 1.375 1.166 0.972 0.818 0.688 0.688 0.578 0.466 0.409 0.344 0.289	78.40 16 67.72 9 58.45 8 50.27 8 42.12 8 33.54 8 25.10 7 17.65 9 11.45 5 6.44 2.82 2 0.80 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.	3.27 3.18 3.45 3.45 3.45 5.20 5.01 3.62 2.02 0.00 0.00 0.00 0.00								

	Committee of the same of the same of	rticle S.	ize Ana	lysis		101-A	W-PSD				ate: 04		Meas # Pres #:	00049
01-AW Sir 0 ml/sec	mulant Superr	natant				mn = ma = cs =	3.902 1.757 2.949	20% = 30% = 40% =	= 2.038 = 2.479 = 2.986	ntiles 60%: 70%: 80%:	4.321 5.046 5.773 6.626 7.258	Dia 5.221 2.142	Vol% 55%	Width 2.891 1.388
%PAS			in the second						ai iri				9/	CHA
100.0	1		ПП		TITI			TT	ÌП		TT	TÌT	TIIT	20.0
90.0			4441										\coprod	18.0
55.5														10.0
80.0			+++		++/++		18.0				+++	+ + +	+++	16.0
70.0					$\perp V$									14.0
70.0														14.0
60.0	+		+ + + -		/									12.0
50.0														40.0
30.0														10.0
40.0													+++	8.0
20.0														
30.0											1			6.0
20.0	4			_////					44	- - 			444	4.0
10.0				7 TIT					11					2.0
0.0			1										Ш	0.0
gr. 0.	100		1.000	j		.00			100	0.0			1000	
IZE	%PASS	%CHAN	SIZE	%PASS	- Size (m	SIZE		ASS	%CH	AN I	SIZE	%PA	SS C	6CHAN
04.0 92.0 97.8	100.00 100.00 100.00	0.00 0.00 0.00	9.250 7.778 6.541	100.00 97.72 59.21	2.28 3.61 12.94	JEL-	<u> 79</u> r	<u> </u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			<u> </u>		V II/All
18.6	100.00	0.00	5.500	76.27	12.11									
52.0 96.0	100.00	0.00	4.625 3.889	64.16 54.07	10.09 9.20									
48.9 09.3	100,00	0.00	3.270 2.750	44.87 35.61	9.26 9.27				*					
76.0 48.0	100.00	0.00	2.312 1.945	26.34 17.80	8.54 7.14									
24.5	100.00	0.00	1.635	10.66	5.34									
04.7 8.00	100.00	0.00	1.375 1.156	5.32 2.01	3.31 1.53									
4.00 2.23	100.00	0.00	0.972	0.48 0.00	0.48			i ili						
2.20	100,00	(1.05	0.888	0.00	0.00					* 0			35,40 35,40	
2.33	100.00	0.00	0.578	0.00	0.00									
2.33 4.00 7.00	100.00		0.409	0.00	0.00									- ' '
2.33 4.00 7.00 1.11	100.00	0.00		0.00			Live .				1.			
2.33 4.00 7.00 1.11 6.16 2.00	100.00 100.00 100.00	0.00	0.344	0.00	0.00							2 2	3.5	
2.33 4.00 7.00 1.11 6.16 2.00 8.50 5.56	100.00 100.00 100.00 100.00	0.00 60.0 0.00 00.0	0.344 0.289 0.243 0.204	0.00 0.00 0.00	0.00									
2.33 4.00 7.00 1.11 6.16 2.00 8.50	100.00 100.00 100.00 100.00	0.00 0.00 0.00	0.344 0.289 0.243	0.00	0.00 0.00 0.00									
2.33 4.00 7.00 1.11 6.16 2.00 8.50 5.56 3.08	100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00	0.344 0.289 0.243 0.204 0.172	0.00 0.00 0.00 0.00	0.00									
2.33 4.00 7.00 1.11 6.16 2.00 8.50 5.56 3.08	100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00	0.344 0.289 0.243 0.204 0.172	0.00 0.00 0.00 0.00	0.00 0.00 0.00									

AW Simulant Sur	article	Size Anal	ysis		101-A	W-PSI)			Date	e: 04 e: 10	112/			s #: 00050
Nerage	matant				mv = mn = ma =	2.996 -2:002	20% 30% 40%	6 = 1.6 $6 = 2.6$ $6 = 2.6$ $6 = 3.6$	09 8 09 8	es 0% = 4 0% = 5 0% = 6 0% = 7	.511 .323 .146	<u>D</u>	ia 473 129	Vol 56 44	% Width % 3.402
%PAS5												-	• • •	-	%CHAN
00.0	200			TH			Ti	111	Ti -		1	1	TT	TT	T 20.0
0.0												1:			
400				1				-	1		-			++-	18:0 -
0.0	.					Se la				- 1					
										$\neg +$	1	-	H		16.0
0.0				411											
							Π								- 14.0
0.0															12/1
									1 4	1					12.0
0.0			// 5						n eri						1.1
- 1							1.1.		7					111	10.0
0.0		 					44								
															8.0
0.0							44	HH	12.0						- 00
															6.0
0.0					•	-	+-	 	-		1		11		4.0
0.6													11		4.0
				64 61			++-	\mathbb{H}					44	111	2.0
													$\parallel \parallel$		
0.100		1.000		10.00		-	++	111			1.50		#	111	0.0
			- Size					10	0.0					100	0
%PASS	%CHAN	SIZE	%PASS %CHA	N S	ons)	%PA	00	8/ 01							
0 100.00	0.00	9.250	98.27 4.41	- -		<u> 707 P</u>	122	%CF	IAN	SIZE		<u>%P</u>	ASS	3 3	%CHAN
100.00	0.00	7.778 6.541	93.86 9.57 84.29 12.11						11						
100.00	0.00	5.500	84.29 12.11 72.18 10.78												0.1
100.00	0.00	4.625 3.889	61.40 9.10							4					
100.00	0.00	3.270	52.30 8.61 43.69 8.91						4.11		Ç.,				
100.00	0.00	2.750	34.78 8.92												
100.00	0.00	2.312 1.945	25.86 8.09 17.77 6.73							140					
100.00	0.00	1.635	11.04 5.20											: ::	
	0.00	1.375 1.156	5.84 3.46 2.38 1.76		a ·				:					٠.	
100.00	0.00	0.972	0.62 0.62	200				, Table							
100.00		0.818	0.00 0.00								. 4				
100.00 100.00 100.00	0.00	LOGRR	0.00 0.00	*				*	- 12	- 4					
100.00 100.00 100.00 100.00	0.00	0.688 0.578		18											
100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00	0.578 0.486	0.00 0.00 0.00 0.00												
100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00	0.578	0.00 0.00 0.00 0.00 0.00 0.00												
100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00	0.578 0.486 0.409 0.344 0.289	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.578 0.486 0.409 0.344 0.289 0.243	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00												
100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00	0.578 0.486 0.409 0.344 0.289 0.243 0.204 0.172	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00												

	P	article S	ize Anal	ysis	1-1670	101-A	W-PS	D				ate: 04			s #: 0005 s #: 01
ml/sec	nulant Super	matant 15 tri bu	tion			mn = ma = cs =	4.127 1.708 2.998 2.002	3 20% 30% 2 40%	6 = 0 $6 = 1$ $6 = 1$.976 .090 .199 .312	60% : 70% : 80% : 90% :	= 1.595 = 1.799 = 2.101 = 2.661 = 3.353	Dia	Vo	01% Width 00% 1.22
MAD	S								17.1	i.					%CHA
100.0			THE		17771				П	TH					∏ 20.0
90.0															100
30.0				z /											18.0
80.0					4444					111		3 25			16.0
70.0					+					++-	· · · · ·			44	14.0
60.0					++++		 		\vdash	##		++			12.0
50.0				No.	11111		100								10.0
40.0							,					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			Ш
40.0															8.0
30.0					11111					44			4.4		6.0
													2		
20.0										-		++		+ + +	4.0
10.0										+					2.0
1	git vi													- 11	1
0.0	100	- 1-1-1	1.000		10.	0.0			111	100				111	†† 0.0 000
ტე,6 0. 1	100		1.000							100	.0				יייי סטט
IZE	%PASS	%CHAN	SIZE		Size (m			PASS		4CH	AN T	SIZE	%	PASS	%CHA
04.0	100,00	0.00	9.250	99.99	0.08									gwi e	
92.0 97.8	100.00	0.00	7.778 5.541	99.91 99.62	0.29										
18.6	100.00	0.00	5.500	99.00	0.93								• •	1 1 - 2	
52.0 96.0	100.00	0.00	4.625 3.889	93.07 96.75	1.32 2.10				- 1						
48.9	100.00	0,00	3.270	94.65	3.66										
09.3 76.0	100.00	0.00	2.750 2.312	90.99 84.83	6.1£ 9.39										
48.0	100.00	0.00	1.945	75.44	13.15	Ma,n									
24.5 04.7	100.00	0.00	1.635 1.375		17.10 19.14										
8.00	100,00	0.00	1.156	26.05	16.37									10	
4.00 2.23	100.00	0.00	0.972 0.818	9.68 0.00	9.68 0.GC			d.							
2.33	100.00	0.00	0.688	0.00	0.00			•	100			30 4			
4.00 7.00	100.00	0.00 0.00	0.578	0.00	0.00					ELS.		1.4			
1.11	100.00	00.0	0.409	0.00	0.00		14.1							lon-	
6.16	100.00	0.00	0.344	0.00	0.00		1.								
2.00 8.50	100.00	0.00	0.289	0.00	0.00		3 F3								
5.56 3.08	100.00	0.00	0.204	0.00	0.00	100									0,3
3 1 LK	100.00	0.00	0.172	0.00	0.00										
	2 2 1 7						0.00		in the second		100			-0.7E	
1.00		+	and the same lines.				T								
								Janapana 1	- 2		4 4				

Particle Siz	e Analysis	CUF 101-AW		Date: 04/ Time: 03:	02 Pres #	
1-AW Simulant Supernatant ml/sec		Summary mv = 4.129 mn = 0.998 ma = 2.297 cs = 2.612 sd = 2.848		0% = 3.875 0% = 4.821 0% = 6.206 0% = 8.677	Dia Vol% 4.065 75% 1.173 25%	5.699
%PASS					- 1 7 - 13	%CHAN
100.0						- 10.0
90.0						- 9.0
0.03						- 8.0
70.0						- 7.0
60.0						- 6.0
50.0						- 5.0
40.0						- 4.0
30.0						- 3.0
20.0						- 2.0
10.0						- 1.0
0.0		0.00	100.0			0.0
0.100	- Size (ı	nicrons) -				140 8 (6) 1441 - 61
SIZE %PASS %CHAN 704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00	SIZE %PASS %CHAN 9.250 91.49 4.32 7.778 87.17 5.34 6.541 81.83 6.36 5.500 75.47 7.29 4.625 68.18 8.01 3.889 60.17 3.33 3.270 51.84 7.97 2.750 43.87 7.08 2.312 36.79 6.24	SIZE %	<u>PASS %CHA</u>	<u>N</u> SIZE	%PASS	%CHAN

			e Analys	IS		CUF 10					ime: 09:			
I-AW Simu ml/sec	ulant Supernat	ant				Summ mv = mn = ma = cs = sd =	3.950 0.993 2.237 2.683	20% 30% 40%	= 1.07 = 1.40 = 1.84 = 2.41	entiles 79 60% 95 70% 91 80% 18 90% 12 95%	= 4.655 = 6.990 = 8.321	<u>Dia</u> 3.980 1.171	74% 26%	Width 5.470 0.613
%PASS	\$			<u> </u>									6/	CHAN
100.0		TIT	1111	T				TI			(a)	TH	TIII	10.0
90.0 -		1										- 14 6		9.0
											all with			8.0
0.03		+				8. Till					1-6			0.0
4.														7.0
70.0 -														0.0
														6.0
60.0														3.5
														5.0
50.0														
				W									444	4.0
40.0														
						38								3.0
30.0											P Pa			
						1				Ш				2.0
20.0									111					1.
							15.50		444	41				1.0
10.0														
														- 0.0
0.0	100		1.000		10	.00			- 1	0.00			100	0
					Size (n	nicron	s) -		2.7.					
SIZE	%PASS	%CHAN	SIZE		%CHAN			PASS	%	CHAN	SIZE.	%P	ASS	%CHA
704.0	100.00	0.00	9.250	92.50	4.26						1.113			
592.0	100.00	0.00	7.778 6.541	88.24 83.02	5.22 5.18						10.0			
197.8 118.6	100.00	0.00	5.500	76.84	7.11	10.75					- 17			1.4
352.0	100.00	0.00	4.625	69.73	7.92	36.7	1. 9		Z.		653			
295.0	100.00	0.00	3.889	61.81 53.45	8.36	100			Te		7.5			****
248.9 209.3	100.00	0.00	2.750	45.40	7.15									
176.0	100.00	0.00	2.312	38.25	6.32									
148.0	100.00	0.00	1.945 1.635	31.93 25.78	6.15 5.60							5.0		
124:5 104.7	100.00	0.00	1.375	19.18	6.77	62.5			* 31					
38.00	100.00	0.00	1.156	12.41	5.54					AT				
74.00 62.23	100.00 100.00	0.00	0.972	6.87 3.49	3.38 1.72	1000								
	100.00	0.00	0.588	1.77	0.89						7.7			
	100.00	0.00	0.578	C.88	0.53				1.1		In a			
52.33 44.00		0.00	0.486 0.409	0.35	0.35				- '81		7.7			
52.33 44.00 37.00	100.00		I LI AUD .								1	4 9		1.1.1.1
52.33 44.00 37.00 31.11	100.00 100.00 100.00	0.00	0.344	0.00	0.00	1 1 12	***					. 200403		
52.33 44.00 37.00 31.11 26.16 22.00	100.00 100.00 100.00	0.00 0.00 00.0	0.344	0.00	0.00									
52.33 44.00 37.00 31.41 26.16 22.00 18.50	100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.57	0.344 0.289 0.243	0.00 0.00 0.00		10								
52.33 44.00 37.00 31.11 26.16 22.00	100.00 100.00 100.00 100.00 99.43 98.09	0.00 0.00 00.0	0.344	0.00	0.00	7.0 10 2.0 10								1 ·

Particle Siz	e Analysis	CUF 101-AW	-005 Date: 04 Time: 09	:05 Pres #: 01
-AW Simulant Supernatant nl/sec		Summary mv = 3.870 mn = 0.997 ma = 2.211 cs = 2.714 sd = 2.671	Percentiles 10% = 1.073 60% = 3.691 20% = 1.387 70% = 4.575 30% = 1.804 80% = 5.872 40% = 2.374 90% = 8.121 50% = 2.998 95% = 10.22	Dia Vol% Width 3.946 74% 5.336 1.172 26% 0.609
%PASS				%CHAN
100.0				10.0
90.0				9.0
30.0				8.0
70.0				7.0
				6.0
50.0				
50.0 🕂 📗				5.0
10.0				4.0
30.0				3.0
20.0				2.0
				1.0
10.0				
0.0 + + + + + + + + + + + + + + + + + +		7	100.0	1000
IZE %PASS %CHAN	- Size (I	nicrons) -	PASS %CHAN SIZE	%PASS %CHAN
104.0 100.00 0.00 192.0 100.00 0.00 197.8 100.00 0.00 18.6 100.00 0.00 152.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 28 00 100.00 0.00	9.250 93.05 4.18 7.778 88.87 5.15 6.541 83.72 5.13 5.500 77.59 7.10 4.625 70.49 7.96 3.869 62.53 8.40 3.270 54.13 8.04 2.750 46.09 7.11 2.312 33.98 6.32 1.945 32.66 6.23 1.635 26.43 6.77 1.375 19.66 6.99 1.156 12.67 5.70 0.972 6.97 3.46			

Summary Percentiles Dis Volte Dis	Summary Percentiles Dis Volte Dis		ze Analysis	fram.	1.3	CUF 1	01-AV	V-005				ite: 04/ ne: 09:		Meas #	00020
%PASS	%PASS	11-AW Simulant Supernatant Oml/sec AVERAGE	**************************************			mv = mn = ma =	3.983 0.997 2.249 2.668	10% 20% 30% 40%	6 = 0 6 = 0 6 = 0	.475 .554 .652	60% = 70% = 80% = 90% =	0.967 1.089 1.252 1.572	Dia 0.982	Vol% 77% 23%	Width 0.75 0.10
90.0 80.0 70.0 60.0 50.0 40.0 10.0	90.0 80.0 70.0 60.0 50.0 40.0 10.0	%PASS											7.1.1	9	
80,0 70,0 60,0 40,0 30,0 30,0 20,0 20,0 20,0 20,0 20,0 2	80,0 70,0 60,0 40,0 30,0 30,0 20,0 20,0 20,0 20,0 20,0 2	100.0		77	THI				*		May 2				20.0
70.0 60.0 60.0 70.0 70.0 70.0 70.0 70.0	70.0 60.0 60.0 70.0 70.0 70.0 70.0 70.0	90.0		4-4-			Lanes	_		1	<u></u>				18.0
50.0 40.0 20.0 10.00	50.0 40.0 20.0 10.00	80.0									n.				16.0
50.0 40.0 20.0 6.100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.	50.0 40.0 20.0 6.100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.	70.0													14.0
40.0 30.0 20.0 10.0 10.00	40.0 30.0 20.0 10.0 10.00	60.0													12.0
30.0 20.0 10.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.	30.0 20.0 10.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.	50.0													10.0
30.0 20.0 10.0 10.0 10.0 10.00	30.0 20.0 10.0 10.0 10.0 10.00	400	23 783 173 83 83												سندار زرد
20.0 10.0 10.0 10.0 10.00	20.0 10.0 10.0 10.0 10.00	200					. 25 -, 25								
0.0	0.0	20.0					100				1/1 . 1 -5KG = 1				4.0
0.0	0.0	700		23											2.0
- Size (microns) - Size %PASS %CHAN Size %CHAN Size %CHAN Size %CHAN Size %CHAN Size %CHA	- Size (microns) - Size %PASS %CHAN Size %CHAN Size %CHAN Size %CHAN Size %CHAN Size %CHA	0.0				00						1-1-			
704.0	704.0				ize (m	icrons						V7C	0/ D		
592.0 100.00 0.00 7.778 99.97 0.04 497.8 100.00 0.00 6.541 99.84 0.17 352.0 100.00 0.00 4.625 99.67 0.32 296.0 100.00 0.00 3.889 99.35 0.57 248.9 100.60 0.00 3.270 93.76 0.92 209.3 100.00 0.00 2.756 97.86 1.37 176.0 100.00 0.00 2.312 96.49 2.04 44.9.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.375 85.08 10.37 38.00 100.00 0.00 1.375 85.08 10.37 38.00 100.00 0.00 0.972 60.46 14.60 52.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.48e 11.85 11.85	592.0 100.00 0.00 7.778 99.97 0.04 497.8 100.00 0.00 6.541 99.84 0.17 352.0 100.00 0.00 4.625 99.67 0.32 296.0 100.00 0.00 3.889 99.35 0.57 248.9 100.60 0.00 3.270 93.76 0.92 209.3 100.00 0.00 2.756 97.86 1.37 176.0 100.00 0.00 2.312 96.49 2.04 44.9.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.375 85.08 10.37 38.00 100.00 0.00 1.375 85.08 10.37 38.00 100.00 0.00 0.972 60.46 14.60 52.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.48e 11.85 11.85	SIZE %PASS %CHAN				SIZE	<u>7</u>	PAS	2	10CF	IAN	DIZE	<u>70P</u>	400	76CHAI
418.6	418.6			7 0.											
352,0	352,0	704.0 100.00 0.00 592.0 100.00 0.00	7.778 99.9			Tribert !		Ki, a							
296:0 100.00 0.00 3.889 99.35 0.57 248.9 100.60 0.00 3.270 93.76 0.92 209.3 100.00 0.00 2.312 96.49 2.04 148.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.972 60.46 14.60 32.23 100.00 0.00 0.818 45.86 12.46 52.23 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.00 0.409 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.56 100.00 0.00 0.243 0.00 0.00 18.56 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.72 0.00 0.00	296:0 100.00 0.00 3.889 99.35 0.57 248.9 100.60 0.00 3.270 93.76 0.92 209.3 100.00 0.00 2.312 96.49 2.04 148.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.972 60.46 14.60 32.23 100.00 0.00 0.818 45.86 12.46 52.23 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.00 0.409 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.56 100.00 0.00 0.243 0.00 0.00 18.56 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.244 0.00 0.00 18.50 100.00 0.00 0.72 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00	6.541 99.9		17	40 20		10	1.4			A 4			
209,3 100.00 C.00 2.750 97.88 1.37 176.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.289 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 15.58 100.00 0.00 0.172 0.00 0.00 <t< td=""><td>209,3 100.00 C.00 2.750 97.88 1.37 176.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.289 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 15.58 100.00 0.00 0.172 0.00 0.00 <t< td=""><td>704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00</td><td>6.541 99.9 5.500 99.8 4.625 99.6</td><td>34 0. 7 0.</td><td>.32</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>A CONTRACTOR</td><td></td><td></td><td></td></t<></td></t<>	209,3 100.00 C.00 2.750 97.88 1.37 176.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.289 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 15.58 100.00 0.00 0.172 0.00 0.00 <t< td=""><td>704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00</td><td>6.541 99.9 5.500 99.8 4.625 99.6</td><td>34 0. 7 0.</td><td>.32</td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>A CONTRACTOR</td><td></td><td></td><td></td></t<>	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6	34 0. 7 0.	.32						1	A CONTRACTOR			
176.0 100.00 0.00 2.312 96.49 2.04 143.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.972 60.46 14.60 82.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 22.01 100.00 0.00 0.244 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.172 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	176.0 100.00 0.00 2.312 96.49 2.04 143.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.972 60.46 14.60 82.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 22.01 100.00 0.00 0.244 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.172 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3	34 0. 37 0. 35 0.	.32 .57										
148.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.818 45.86 12.46 52.23 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 22.00 100.00 0.00 0.244 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.56 100.00 0.00 0.204 0.00 0.00 15.56 100.00 0.00 0.172 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00 <td>148.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.818 45.86 12.46 52.23 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 22.00 100.00 0.00 0.244 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.56 100.00 0.00 0.204 0.00 0.00 15.56 100.00 0.00 0.172 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00 <td>704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00</td><td>6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7</td><td>34 0. 37 0. 35 0. 8 0.</td><td>.32 .57 .92</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	148.0 100.00 0.00 1.945 94.45 3.34 124.5 100.00 0.00 1.635 91.11 6.03 104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.818 45.86 12.46 52.23 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 22.00 100.00 0.00 0.244 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.56 100.00 0.00 0.204 0.00 0.00 15.56 100.00 0.00 0.172 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00 <td>704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00</td> <td>6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7</td> <td>34 0. 37 0. 35 0. 8 0.</td> <td>.32 .57 .92</td> <td></td>	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7	34 0. 37 0. 35 0. 8 0.	.32 .57 .92										
124.5	124.5	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8	34 0. 37 0. 35 0. 38 0.	.32 .57 .92 .37										
104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.972 60.46 14.60 62.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	104.7 100.00 0.00 1.376 85.08 10.37 38.00 100.00 0.00 1.156 74.71 14.25 74.00 100.00 0.00 0.972 60.46 14.60 62.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4	34 0. 37 0. 35 0. 36 0. 36 1. 39 2. 35 3.	.32 .57 .92 .37										
74.00 100.00 0.00 0.972 60.46 14.60 62.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.244 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	74.00 100.00 0.00 0.972 60.46 14.60 62.23 100.00 0.00 0.818 45.86 12.46 52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.244 0.00 0.00 22.00 100.00 0.00 0.243 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00	6.541 99.9 5.600 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1	14 0. 17 0. 15 0. 16 0. 16 1. 19 2. 15 3. 11 6.	.32 .57 .92 .37 .04 .34										
\$2.23	\$2.23	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 143.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.376 85.0	34 0. 37 0. 35 0. 36 1. 39 2. 35 3. 31 6. 38 10	.32 .57 .92 .37 .04 .34 .03										
52.33 100.00 0.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.344 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.66 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	52.33 100.00 0.688 33.40 10.75 44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.486 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.344 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 109.00 0.90 418.6 100.00 0.90 352.0 100.00 0.90 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 143.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 38.00 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7	14 0. 17 0. 15 0. 16 1. 19 2. 15 3. 11 6. 108 10	.32 .57 .92 .37 .04 .34 .03 0.37 4.25										
44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.48€ 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	44.00 100.00 0.00 0.578 22.65 10.80 37.00 100.00 0.00 0.48€ 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 109.00 0.90 418.6 100.00 0.90 352.0 100.00 0.90 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 143.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 74.00 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4	14 0. 17 0. 15 0. 16 1. 19 2. 15 3. 11 6. 108 10 11 14	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60										
37.00 100.00 0.00 0.48€ 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.344 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	37.00 100.00 0.48€ 11.85 11.85 31.11 100.00 0.00 0.409 0.00 0.00 26.16 100.00 0.00 0.344 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 109.00 0.90 418.6 100.00 0.90 352.0 100.00 0.90 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 143.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 38.00 100.00 0.00 74.00 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8	14 0. 17 0. 15 0. 16 0. 19 2. 15 3. 11 6. 10 14 16 14 16 12	.32 .57 .92 .37 .04 .34 .03).37 4.25 4.60 2.46										
26.16 100.00 0.00 0.344 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	26.16 100.00 0.00 0.344 0.00 0.00 22.00 100.00 0.00 0.289 0.00 0.00 18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 109.00 0.90 418.6 100.00 0.90 352.0 100.00 0.90 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 74.00 100.00 0.00 74.00 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 44.00 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6	14 0. 17 0. 15 0. 16 0. 19 2. 15 3. 11 6. 10 14 16 14 16 12 10 10 10 10	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80										S.(1)
22.00	22.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 109.00 0.90 418.6 100.00 0.90 352.0 100.00 0.90 296.0 100.00 0.90 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 124.5 100.00 0.00 124.5 100.00 0.00 124.5 100.00 0.00 74.00 100.00 0.00 74.00 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.33 100.00 0.00 44.00 100.00 0.00 37.00 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6 0.486 11.8	14 0. 17 0. 15 0. 16 0. 18 1. 19 2. 15 3. 11 6. 10 14 16 14 16 12 17 10 10 18 10 10 18 10 10	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80										20
18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	18.50 100.00 0.00 0.243 0.00 0.00 15.56 100.00 0.00 0.204 0.00 0.00 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 109.00 0.90 418.6 100.00 0.90 352.0 100.00 0.90 296.0 100.00 0.90 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 124.5 100.00 0.00 124.5 100.00 0.00 124.5 100.00 0.00 74.00 100.00 0.00 74.00 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.33 100.00 0.00 52.33 100.00 0.00 537.00 100.00 0.00 37.00 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6 0.409 0.0	14 0. 17 0. 15 0. 16 0. 18 1. 19 2. 15 3. 11 6. 10 14 14 14 16 12 10 10 10 10 11 14	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80										
15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	15.56 100.00 0.00 0.204 0.00 0.90 13.08 100.00 0.00 0.172 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 109.00 0.90 418.6 100.00 0.90 352.0 100.00 0.90 296.0 100.00 0.90 209.3 100.00 0.90 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 104.7 100.00 0.00 74.00 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.33 100.00 0.00 52.31 100.00 0.00 537.00 100.00 0.00 37.00 100.00 0.00 31.11 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6 0.486 11.8 0.409 0.00 0.344 0.00	14 0. 17 0. 15 0. 16 1. 19 2. 15 3. 11 6. 10 10 14 14 16 12 16 10 17 10 18 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80 1.85										C (1)
		704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 2248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 104.7 100.00 0.00 74.00 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.33 100.00 0.00 52.31 100.00 0.00 37.00 100.00 0.00 37.00 100.00 0.00 31.11 100.00 0.00 22.00 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6 0.486 11.8 0.409 0.0 0.344 0.0 0.289 0.0	14 0. 17 0. 15 0. 16 1. 19 2. 15 3. 10 10 10 14 14 14 14 14 16 12 10 10 10 10 10 10 10 10 10 10 10 10 10	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80 1.85										у. 0
11.00 100.00 D.91 0.146 0.00 0.00	11.00 T00.00 0.01 0.146 0.00 0.00	704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 2248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00 124.5 100.00 0.00 74.00 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00 52.23 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6 0.486 11.8 0.409 0.0 0.289 0.0 0.243 0.0 0.204 0.0	14 0. 17 0. 15 0. 16 1. 19 2. 19 2. 10 10 10 10 10 10 10 10 10 10 10 10 10 1	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80 1.85										40
		704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 38.00 100.00 0.00 32.23 100.00 0.00 52.33 100.00 0.00 37.00 100.00 0.00 31.11 100.00 0.00 22.00 100.00 0.00 18.50 100.00 0.00 15.56 100.00 0.00 13.08 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6 0.486 11.8 0.409 0.0 0.344 0.0 0.289 0.0 0.243 0.0 0.204 0.0 0.172 0.0	14 0. 17 0. 15 0. 16 1. 19 2. 15 3. 10 10 14 16 14 16 12 10 10 0. 10	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80 .00										4.0
		704.0 100.00 0.00 592.0 100.00 0.00 497.8 100.00 0.00 418.6 100.00 0.00 352.0 100.00 0.00 296.0 100.00 0.00 248.9 100.00 0.00 209.3 100.00 0.00 176.0 100.00 0.00 148.0 100.00 0.00 124.5 100.00 0.00 104.7 100.00 0.00 38.00 100.00 0.00 32.23 100.00 0.00 52.33 100.00 0.00 37.00 100.00 0.00 31.11 100.00 0.00 22.00 100.00 0.00 18.50 100.00 0.00 15.56 100.00 0.00 13.08 100.00 0.00	6.541 99.9 5.500 99.8 4.625 99.6 3.889 99.3 3.270 93.7 2.750 97.8 2.312 96.4 1.945 94.4 1.635 91.1 1.375 85.0 1.156 74.7 0.972 60.4 0.818 45.8 0.688 33.4 0.578 22.6 0.486 11.8 0.409 0.0 0.344 0.0 0.289 0.0 0.243 0.0 0.204 0.0	14 0. 17 0. 15 0. 16 1. 19 2. 15 3. 10 10 14 16 14 16 12 10 10 0. 10	.32 .57 .92 .37 .04 .34 .03 0.37 4.25 4.60 2.46 0.75 0.80 .00										2.0

		article S	ize Ana	alysis		Duplic	01-AW-00	, a - de	Date: 04 Time: 09		s #: 0003
	nulant Super	matant			T visuality	Sumr		Perce		The state of the s	ol% Width
ml/sec	., 10/1-40								60% = 4.599		% 10.9
						mn =	0.856 2	0% = 1.607	70% = 5.924		3% 6.074
					garage, Pak		2.530 3	0% = 2.252	80% = 8.013	1.146 20	0% 0.662
4 2 2							2.372 4	0% = 2.933	90% = 12.48		
%PAS	S			<u> </u>		SQ =	3.929 5	0% = 3.569	95% = 25.84		
100.0	1		iiii		`````			<u></u>			%CHA
	H										10.0
90.0		, ,									
50.0						/					9.0
co o											
80.0					3	La se		11111		++++	8.0
	7 . 4				ATTENNESS OF THE PARTY OF THE P		- 1				
70.0			++++-								7.0
					M						'
60.0 -		-++1		- 2							6.0
				2.5							0.0
50.0 -				N							
50.0				EN DM 23 81							5.0
40.0	# 1. N		1					11111			
40.0 -				13 18 2 1 13 12 12 12 12 12 12 12 12 12 12 12 12 12	150 150 150 160 160 160 160 160 160 1	2		++++			4.0
						P-4-4-4-50					
30.0 -		++++		19 15 17 18 18	** - 12 - 12 - 13 - 14 - 14 - 14 - 14 - 14 - 14 - 14	§		44444	وانتجا عليت	11111	3.0
	3 - 3 1		5			S S					3.0
20.0 -											
											2.0
400											
10.0							M 88	11111		++++++	+ 1.0
Section 1									tole like		
0.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1111		2 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	នធ្លា					0.0
ეე.ი 0.1	00		1.000		10.	00		100	.0	10	00
					- Size (m	crons)	-				
ZE	%PASS	%CHAN	SIZE	%PAS		SIZE	%PAS	3 %CH	AN SIZE	%PASS	%CHAN
04.0 92.0	100.00	0.00	9.250	83.58	4.8€						
97.3	100.00	0.00	7.778 6.541	79.12 73.52	5.60 6.29						
	100.00	0.00	5.600	67.23	6.98						
	100.00	0.00	4.625	€0.25	7.60						
52.0					7.86					fact of the	
52.0 96.0	100.00	0.00	3.889	52.65			9 9 112.0				
52.0 96.0 48.9	100.00	0.00	3.889	44.79	7.46						and the second second
52.0 96.0 48.9 09.3	100.00 100.00 100.00	0.00 0.00 0.00	3.889 3.270 2.750	44.79 37.33	7.46 6.45						
52.0 96.0 48.9 09.3 76.0	100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00	3.889 3.270 2.750 2.312	44.79 37.33 30.88	7.46 6.45 5.43						
52.0 96.0 48.9 09.3 76.0 48.0 24.5	100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00	3.889 3.270 2.750 2.312 1.945	44.79 37.33 30.88 25.45	7,46 6,45 5,43 4,94						
52.0 96.0 48.9 99.3 76.0 48.0 24.5	100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.889 3.270 2.750 2.312 1.945 1.635	44.79 37.33 30.88 25.45 20.51 15.51	7.46 6.45 5.43						
52.0 96.0 48.9 99.3 76.0 48.0 24:5 94.7	100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156	44.79 37.33 30.88 25.45 20.51 15.51 10.49	7.46 6.45 5.43 4.94 5.00 5.02 4.21						
52.0 96.0 48.9 99.3 76.0 48.0 24.5 94.7 8.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.28	7.46 6.45 5.43 4.94 5.00 5.02 4.21 2.72						
52.0 96.0 48.9 195.3 76.0 48.0 24.5 10.0 1.00 2.23	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972 0.818	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56	7.46 6.45 5.43 4.94 5.00 5.02 4.21 2.72 1.49						
52.0 96.0 48.9 95.3 76.0 48.0 24.5 94.7 3.00 4.00 2.23 2.33	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972 0.818 0.688	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07	7.46 6.45 5.43 4.94 5.00 5.02 4.21 2.72 1.49 0.82						
52.0 96.0 48.9 95.3 76.0 48.0 24.5 94.7 8.00 1.00 2.23 2.33 1.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972 0.818 0.688 0.678	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07	7.46 6.45 5.43 4.94 5.00 6.02 4.21 2.72 1.49 0.82 0.52						
52.0 96.0 48.9 05.3 76.0 48.0 24.5 04.7 3.00 4.00 2.23 2.33 4.00 7.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972 0.818 0.688 0.678 0.486	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07 1.25 0.73	7.46 6.45 5.43 4.94 5.00 6.02 4.21 2.72 1.49 0.82 0.52 0.40						
52.0 96.0 48.9 03.3 76.0 48.0 24.5 04.7 8.00 4.00 2.23 2.33 4.00 7.00 1.11 5.16	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.45 94.84	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972 0.818 0.688 0.678	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07	7.46 6.45 5.43 4.94 5.00 6.02 4.21 2.72 1.49 0.82 0.52 0.40 0.33						
52.0 96.0 48.9 09.3 76.0 48.0 24.5 04.7 8.00 4.00 2.23 2.33 4.00 7.00 1.11 5.16 2.00	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.45 94.84 93.98	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.889 3.270 2.750 2.312 1.945 1.635 1.376 1.156 0.972 0.818 0.688 0.678 0.486 0.409 0.344 0.289	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07 1.25 0.73 0.33 0.00 0.00	7.46 6.45 5.43 4.94 5.00 5.02 4.21 2.72 1.49 0.82 0.52 0.40 0.33 0.00						
18.6 52.0 96.0 48.9 09.3 76.0 48.0 24.5 04.7 8.00 4.00 2.23 2.33 4.00 7.00 1.11 6.16 2.00 8.50	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.45 94.84 93.98 93.26	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3,889 3,270 2,750 2,312 1,945 1,635 1,375 1,156 0,972 0,818 0,688 0,688 0,678 0,486 0,409 0,344 0,289 0,243	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07 1.25 0.73 0.33 0.00 0.00	7,46 6,45 5,43 4,94 5,00 5,02 4,21 2,72 1,49 0,82 0,62 0,40 0,33 0,00 0,00						
52.0 96.0 48.9 09.3 76.0 48.0 24.5 04.7 8.00 4.00 2.23 2.33 4.00 7.00 1.11 6.16 2.00 8.50 6.56	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.45 94.84 93.98 93.26 92.29	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.889 3.270 2.750 2.312 1.945 1.635 1.375 1.156 0.972 0.818 0.688 0.678 0.409 0.344 0.289 0.243 0.204	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07 1.25 0.73 0.33 0.00 0.00	7,46 6,45 5,43 4,94 5,00 5,02 4,21 2,72 1,49 0,82 0,52 0,40 0,33 0,00 0,00 0,00						
52.0 96.0 48.9 09.3 76.0 48.0 24.5 04.7 3.00 4.00 2.23 2.33 4.00 7.00 1.11 5.16 2.00 3.50	100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 96.45 94.84 93.98 93.26	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3,889 3,270 2,750 2,312 1,945 1,635 1,375 1,156 0,972 0,818 0,688 0,688 0,678 0,486 0,409 0,344 0,289 0,243	44.79 37.33 30.88 25.45 20.51 15.51 10.49 6.23 3.56 2.07 1.25 0.73 0.33 0.00 0.00	7,46 6,45 5,43 4,94 5,00 5,02 4,21 2,72 1,49 0,82 0,62 0,40 0,33 0,00 0,00						

Particle Size Analysis		04/09/99 Meas #: 00145 15:43 Pres #: 01
WERAGE NUMBER DISTRIBUTION	Summary Percentiles mv = 3.041 10% = .1937 60% = .29 mn = .3391 20% = .2105 70% = .33 ma = 1.364 30% = .2277 80% = .39 cs = 4.399 40% = .2462 90% = .52 sd = .1149 50% = .2679 95% = .68	Dia Vol% Width .2679 100% .2297 .35 .54 .37
%PASS		%CHAN
100.0 ——————————————————————————————————		50.0
<u>,, , </u>		
90.0 -		45.0
80.0		40.0
56.6		40.0
70.0	L _ <i> </i> - - -	35.0
60.0 - - 		30.0
50.0	 	25.0
40.0		20.0
30.0		15.0
20 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
20.0		10.0
10.0		
9.9		5.0
0.0		0.0
	600 1.000	10.00
- Size (m	icrons) -	
ZE %PASS %CHAN SIZE %PASS %CHAN	SIZE %PASS %CHAN SIZE	%PASS %CHAN
541 100.00 0.02 0.0859 0.00 0.00 500 99.98 0.02 0.0723 0.00 0.00		
625 39.96 0.03 0.0608 0.00 0.00		
889 99.93 0.04 0.0511 0.00 0.00 270 99.89 0.07 0.0430 0.00 0.00		
270 99.89 0.07 0.0430 0.00 0.00 750 99.82 0.10 0.0361 0.00 0.00		
313 99.72 0.14 0.0304 0.00 0.00		
\$45 99.58 0.21 0.0255 0.00 0.00 635 99.37 0.32 0.0215 0.00 0.00		
375 99.05 0.48 0.0181 0.00 0.00		
156 98.57 0.73 0.0152 0.00 0.00 9723 97.84 1.12 0.0128 0.00 0.00		7.
8176 96.72 1.74 0.0107 0.00 0.00		g- 1 E www 110
6875 94.98 2.77 0.0090 0.00 0.00 6781 92.21 4.25 0.0076 0.00 0.00		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
6781 92.21 4.25 0.0076 0.00 0.00 4861 37.96 6.41 0.0064 0.00 0.00		
4088 31.55 9.44 0.0054 0.00 0.00		
2437		
2431 38.46 22.12		
		5
2044 13.34 16.34 1719 0.00 0.00		
1719 0.00 0.00 1445 0.00 0.00		
1719 0.00 0.00		

			ze Analy	rsis		CUF 1 Duplic	ate			rca	Da Ti ntiles	ate: 04 me: 09		Meas Pres # Vol%	
1-AW Simu ml/sec	ulant Superna	lant				mv =	5.145 0.839 2.373 2.528	20% 30% 40%	6 = 1. 6 = 1. 6 = 2. 6 = 2.	090 494 067 733	60% = 70% = 80% = 90% = 95% =	5.443 7.280 10.99	4.421 1.144		
%PASS	S									v	:			-	%CHAN ┌ 10.0
100.0															10.0
90:0										+	· · · · · · · · · · · · · · · · · · ·				9.0
80.0							1,9								- 8.0
70.0 -										+					7.0
30.0															6.0
50.0 -										+					5.0
40.0 -										4		-			4.0
															- 3.0
30.0 -				ИШ											2.0
20.0 -											77.				1.0
10.0															
0.0 - 0.1	100		1.000		7 1 1 1 1 1	0.00	ila B		14	10	0.0			10	+ 0.0 100
IZE (%PASS	%CHAN	SIZE	%PASS	- Size (r	nicron:		6PAS	S	%C	HAN	SIZE	<u>%</u> P	ASS	%CHAN
04.0	100.00	0.00	9.250 7.778	89.39 81.94	4.45 5.32										
97.8 13.6	100.00	0.00 0.00	6.541 5.500	75.62 79.41	6.21 7.04										
52.0 96.0	100.00	0.00 0.00	4.625 3.889	63.37 55.68	7.69 7.92										
48.9	100.00	0.00	3.270	47.76	7.51	1 - 12									
209.3 (76.0	100.00	0.00	2.750	40.25	6.53 5.62							- 10	4 . 3		1.00
48.0	100.00	0.00	1.945 1.635	28.10 22.82	5.28 5.49				×.						
124:5	100.00	0.00	1.375	17.33	5.59							- 24		2 49.	
88.00 74.00	100.00	0.00	1.156 0.972	11.74 7.05	4.69 3.03				7 V.T.			1.4			1.11
32.23	100.00	0.00	0.818	4.02	1.66	1 1							9		
52.33 14.00	100.00 100.00	0.00	0.688	2.36 1.44	0.92 0.60	03.		1		- 19 as 10 34		100			
	100.00	0.80	0.486	0.84	0.46							. 00 			16.7
	\$9.20 98.33	0.87	0.409	0.00	0.00	1,30	ų in		5			. (34			· die
31.11	97.42	1.07	0.289	0.00	ົວ.00	i - 30			yla y						
37.00 31.11 26.16 22.00		1.45	0.243	0.00	0.00	1						101-			
31.11 26.16 22.00 18.50	96.35	. 206			0.00			. 18							
31.11 26.16 22.00 18.50 15.56 13.08	96.35 94.90 92.84	2.06 2.82	0.172	0.00				100							
31.11 26.16 22.00 18.50 15.56	96.35		0.172 0.145	0.00	0.00										
1.11 26.16 22.00 18.50 15.56	96.35 94.90 92.84	2.82													

01-AW Simu		the state of the s	ze Analysi	s electrical	CUF 101-AW- Duplicate Summary	Percentiles	Date: 04/12 Time: 10:00		01 Width
0 ml/sec	am oupenia	iam.			mv = 4.570 mn = 0.851 ma = 2.307	10% = 1.077 60% 20% = 1.451 70% 30% = 1.980 80% 40% = 2.633 90% 50% = 3.317 95%	= 4.107 = 5.162 = 6.785 = 9.961	4.289 76% 1.148 24%	6.649 0.654
%PASS					and the state of t		Propries and the	9/	CHAI
100.0									10.0
90.0									9.0
80.0									8.0
70.0									7.0
60.0									6.0
50.0									5.0
40.0									4.0
30.0									3.0
20.0									2.0
10.0					8 8 8 B 59				1.0
0.0	00					100.0		100	0.0
no.e 0.1 0			1.000	- Size (ı).00 nicrons) -	100.0			
704.0 592.0 497.8 418.6 352.0 296.0 248.9 209.3 176.0	%PASS 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00	%CHAN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	9.250 8 7.778 8 6.541 7 5.500 7 4.625 6 3.889 5 3.270 4 2.750 4 2.312 3 1.945 2 1.635 2	PASS %CHAN 8.41 4.33 4.08 5.27 8.81 6.26 2.55 7.19 5.36 7.89 7.47 8.12 9.35 7.60 1.75 5.59 5.16 5.72 9.44 5.48 3.96 5.80 8.16 5.95 2.21 4.97	SIZE %P	ASS %CHAN	SIZE	<u>%PASS</u>	%CHAN

Particle Size Distribution Raw Data for AW-101 Using the Microtrac UPA

Partio	cle Size Analysis		Ouplicate Co	mpla	Date: 04/09/9 Time: 15:50	Pres #: N/A
•			Summsry mv = 5.171 mn = 4.244 ma = 4.925 cs = 1.218 sd = .9965	Percentiles 10% = 3.681	6 = 5.847 6 = 5.838 6 = 5.028 6 = 6.235	ia Vol% Width 436 100% 1.993
%PASS						%CHAN
100.0						1 111 1 1 1
0.00						45.0
30.0						40.0
70.0						35.0
30.0						30.0
50.0						25.0
40.0						25.0
30.0						
20.0						10.0
10.0						5.0
0.0		 	1000	1.000		10.00
0.0010	0.0100		nicrons) -			
.\$41 100.00 4 .\$500 \$2.49 2 .\$25 25.91 1 .\$889 12.57 .270 6.01 .750 2.55 .313 0.26 .\$45 0.00 .375 0.00 .375 0.00 .458 0.00 .458 0.00 .817\$ 0.00 .817\$ 0.00 .817\$ 0.00 .817\$ 0.00 .817\$ 0.00 .82431 0.00 0.2891 0.00 0.2431 0.00 0.1719 0.00 0.1719 0.00	CCHAN SIZE %PAS 47.51 0.0859 0.00 28.58 0.0723 0.00 13.34 0.0608 0.06 6.58 0.0511 0.00 3.46 0.0430 0.00 2.19 0.0361 0.00 0.38 0.0304 0.00 0.00 0.0255 0.00 0.00 0.0215 0.00 0.00 0.0181 0.00 0.00 0.0152 0.00 0.00 0.0152 0.00 0.00 0.0128 0.00 0.00 0.0128 0.00 0.00 0.054 0.00 0.00 0.0044 0.00 0.00 0.0045 0.00 0.00 0.003 0.003 0.00 0.003 0.003 0.00 0.003 0.00 0.00 0.003 0.00 0.00 0.003 0.00 0.00 0.	5 %CHAN 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.0	SIZE	PASS MCHAN	SIZE	%PASS %CHAN

	Pa	rticle Siz	ze Analy	/sis	100g 100g		4W-101 cate Sa		AW-10		Date: 0 Time: 1	5:51 Pr	eas# es#:	N/A
0				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		mn = ma = cs =	3.266	20% 30% 40%	= .567 = 1.09 = 1.74 = 2.46	2 70% 4 80% 9 90%	6 = 4.053 6 = 4.795 6 = 5.448 6 = 5.926 6 = 6.178	3.258	<u>/ol%</u> 100%	<u>Width</u> 4.786
%PAS	S												%	CHAN 20.0
100.0														20.0
90:0	1					1 21 12/34	1	+++			+-		$\dagger \dagger$	18.0
80.0	-						-	++		++		/	₩	16.0
70.0													₩	14.0
60.0								-						12.0
ວົນ.0 ·							TT		TH				\prod	10.0
40.0											1		$\!$	8.0
30.0							-	44			1 30	COLOR MALESTAN	₩	6.0
20.0										/				4.0
									المرازل					
10.0							20							2.0
0.0	0010		 0.0100	+	 0.	1000	1	8 9 8	। १ । । ।	000	<u>an</u> ns	<u> </u>	10.0	0.0 0
			7		- Size (ı						T-::	0/212		
<u> 217.E</u> 8.541	<u>%PASS</u> 100.00	%CHAN 13.09	<u>SIZE</u> 0.0869	%PASS 0.00	%CHAN 0.00	SIZE	<u>%</u>	PASS	<u>%C</u>	<u>HAN</u>	SIZE	%PAS	<u>5</u> .	%CHAN
5.500 4.625	80.91 67.69	13.22 9.79	0.0723	0.00	0.00						7			
3.839 3.270 2.7 <i>5</i> 0	57.90 50.15 43.63	7.75 6.52 5.70	0.0511 0.0430 0.0361	0.00 0.00 0.00	0.00 0.00 0.00									W 1145
2.313 1.945	37.93 32.88	5.05 4.47	0.0304	0.00	0.00									
1.635 1.375	28.41 24.49	3.92 3.44	0.0215	0.00 0.00	0.00 0.00									
1.156 0. 9 723	21.05 18.00	3.05 2.78	0.0152 0.0128	0.00 0.00	0.00 00.0									
0.8176	15.22 12.64	2.53 2.40	0.0107	0.00	0.00									
0.5781 0.4861 0.4088	10.24 8.03 6.03	2.21 2.00 1.80	0.0076 0.0064 0.0054	0.00 0.00 0.00	00.0 00.0 00.0									
0.3437 0.2891	4.23 2.61	1.72 1.53	0.0004	0.00 0.00 0.00	0.00	7								
0.2431	0.93 0.00	0.93 0.00												
0.1719 0.1445	0.00	0.00												
0.1215 0.1022	0.00 0.00	0.00												

43.49	Particle Size And	alysis	Duplicate Sa	-005 AW-ICI-P	Date: 04/09/ Time: 15:52	99 Meas #: Pres #:	: N/A N/A
			Summary mv = 2.665 mn = 1.908 ma = 2.269 cs = 2.645 sd = .9739	Percentil 10% = 1.624 60 20% = 1.781 70 30% = 1.915 80 40% = 2.048 90 50% = 2.188 98	es D% = 2.358 5.0% = 2.604 2.0% = 3.115 D% = 5.333	0ia Vol% .664 15% .081 85%	Width 1.603 .9619
6PASS						%	CHAN
00.0			T	TITIII		TVITT	50.0
0.0						/////	45.0
0.0					+	+++++	40.0
0.0				+++++			35.0
0.0					-H		30.0
0.0							25.0
0.0						 	20.0
0.0							15.0
0.0						23	10.0
0.0							5.0
.0 +						NAME OF THE PERSON OF THE PERS	0.0
0.0010	0.010	0.1 - Size (m	00 0 icrons) -	1.900		10.00	1
S %PASS 41 100.00 50 90.98 25 37.48 39 34.95 70 31.49 50 74.11 13 57.72 45 32.48 35 10.54 72 0.00 723 0.00 87 0.00 87 0.00 87 0.00 87 0.00 88 0.00 88 0.00 88 0.00 891 0.00 844 0.00 845 0.00 845 0.00 845 0.00 845 0.00 85 0.00 86 0.00 87 0.00 88 0.00 891 0.00 845 0.00 845 0.00 87 0.00	%CHAN SIZE 9.02 0.0859 3.50 0.0608 3.46 0.0511 7.38 0.0430 18.39 0.0364 25.54 0.0364 21.64 0.0256 9.02 0.0215 1.52 0.0181 0.00 0.0152 0.00 0.0152 0.00 0.0107 0.00 0.0107 0.00 0.0964 0.00 0.0054 0.00 0.0038 0.00 0.0038 0.00 0.0038 0.00 0.0038 0.00 0.0038 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000	%PASS %CHAN 0.90 0.00 0.00 0.00	SIZE %P	ASS %CHAN	SIZE	FASS <u>%</u>	CHAN

81 11	F	Particle S	Size Ana	lysis		İ	CUF AW- Duplicate	101-005 Samal	- AW-10	I-PSO Da	ite: 04 ne: 15		Meas #	t: 00146
AVERI Numb	ER D	<u>ISTRIBU</u>	Пом	1 - 100 1 - 200 1 - 200 1 - 200 1 - 200 0 - 200			Summar mv = 3.7 mn = .42 ma = 2.2 cs = 2.6 sd = .13	01 10° 55 20° 80 30° 32 40°	Perc % = .222 % = .236 % = .250 % = .267	entiles 2 60% = 1 70% = 7 80% = 8 90% =	.3165 .3607 .4392		Vol% 5% 95%	
%PAS 100.0	S												c,	6CHAN
130.0									ППП		—		ПП	50.0
90.0	10.4				<u> </u>			4 52 .						45:0
80.0 -														45.0
00.0								1/					+	40.0
70.0 -			++-					1/-					1	35.0
60.0 -								f						00,0
								1/					1	30.0
50.0 -			tilli			H							+ -	25.0
10.0 -											4			00.0
20.0													\prod	20.0
30.0 -									+++			+++	#	15.0
20.0 -						1	-						Ш	10.0
0.0														10.0
0.0										- i			##	5.0
0.0	010	+++	0.0400			Commence of the contract of th	1 21 8		4777		a	 - - -	₩.	0.0
			0.0100		- Size	0.100 (micr			1.0	00			10.00). : .
<u>ZE</u> 541	%PASS 100.00	%CHAN 0.10	SIZE	%PASS	%CHA			PASS	%СН	AN SIZ	E	%PASS	5 %	CHAN
500 625 889 870 750 313 845 875 875 8775 8875 8875 8875 8875 88	99.90 99.80 39.70 99.83 99.58 99.39 98.94 97.97 96.60 95.46 94.72 93.96 92.79 90.97 83.12 33.68 76.92 36.74 50.47 25.02 0.00 0.00 0.00	0.10 0.10 0.12 0.45 0.97 1.37 1.14 0.76 1.17 1.82 2.85 4.44 6.76 10.18 16.27 25.45 25.02 0.00 0.00 0.00	0.0859 0.0723 0.0608 0.0511 0.0430 0.0361 0.0356 0.0215 0.0181 0.0152 0.0128 0.0107 0.0090 0.0076 0.0054 0.0048 0.0038	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									

	Par	ticle Siz	e Analy	sis	Yya	CUF AW-10 Duplicate S	ample		Time: 16:	02 F	Pres #:	00147 01
AVERAG		Bu Tlon)			Summary mv = 3.608 mn = .3239 ma = 1.742 cs = 3.444 sd = .1113	10% = .1 20% = .1 39% = .2 4 40% = .2	ercentiles 1750 50% 1933 70% 2102 80% 2278 90% 2483 95%	= .2757 = .3137 = .3729 = .4978	<u>Dia</u> .2483	100%	Width .2226
%PASS		na man									%	CHAN
100.0		· · 	· · · · · · · · · · · · · · · · · · ·					111		- 111		50.0
								+				
90.0							- //					45.0
80.0 -				_ _	1111		_/_ _					40.0
												25.0
70.0 ~												35.0
60.0								+		-		30.0
50.0 -								+		+++	+	25.0
40.0 -										+ + +	╫	20.0
30.0 ~				_		######################################						15.0
20.0 -											444	10.0
												5.0
10.0 -												5.0
											444	0.0
0.0	0010		0.0100			1000		1.000			10.0	
						nierons) -			T			%CHAN
SIZE 9.541 6.500 4.625 3.889 3.270 2.750 2.313 1.945 1.945 1.156 0.9723 0.8176 0.6876 0.5781 0.4861	%PASS 100,00 99,97 99,93 39,88 99,82 39,75 59,65 39,50 39,27 98,93 98,41 97,68 96,68 95,20 32,97 39,45	0.03 0.04 0.05 0.06 0.07 0.10 0.15 0.23 0.34 0.52 0.73 1.09 1.43 2.23 3.51 5.45	0.0859 0.0723 0.0608 0.0511 0.0430 0.0361 0.0304 0.0255 0.0215 0.0181 0.0152 0.0152 0.0107 0.0090 0.0064	6PASS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	SIZE	APASS	%CHAN	SIZE	<u> </u>	100	76-0113NN
0.4068 0.3437 0.2891 0.2431 0.2044 0.1719 0.1445 0.1215 0.1022	54.01 75.78 93.98 47.79 26.55 8.45 0.00 0.00 0.00	8.23 11.83 16.16 21.24 18.10 8.45 0.90 0.90 0.00	0.0054 0.0045 0.0038	0.00 6.00 0.00	0.00 0.00 0.00						····	

Summary Percentles Nove			rticle Si	ze Analy.	sis	CUF AW-10		Date: 04/09/9 Time: 15:01	Pres #: N/A
90.0 90.0 90.0 90.0 18.0 16.0 70.0 60.0 50.0 10.0 10.0 10.0 10.0 10.0 10.0 1	mulant Suş	pematant				mv = 3.125 mn = .3729 ma = 1.467 cs = 4.090	10% = .5854 €0 20% = 1.073 70 30% = 1.601 80 40% = 2.203 90	0% = 3.750 3.0 0% = 4.575 .20 0% = 5.340 0% = 5.884	086 96% 4.568
90.0 70.0 60.0 40.0 30.0 10.0		3							
30.0 70.0 60.0 50.0 40.0 30.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 10.0 70.0 7	100.0			ПП					20.0
30.0 70.0 60.0 40.0 30.0 70.0 10.0 10.0 10.0 10.0 10.0 10.0 1	90.0								180
70.0 50.0 40.0 70.0 10.0	50.0								
70.0	30.0								
50.0 40.0 20.0 10.0									
50.0	70.0		+++					-+-+/	14.0
50.0									
40.0 30.0 20.0 30.0 0.0010 0.0100 0.1000 1.000 1.000 1.000 10.	60.0								
40.0 30.0 20.0 30.0 0.0010 0.0100 0.1000 1.000 1.000 1.000 10.								1 / 1	
30.0 20.0 10.0 10.0	50.0								10.0
30.0 20.0 10.0 0.0010 0.0100 0.0100 0.1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000	400 -			1 1 1 1 1 1 1 1 1 1 1 1					TO NOT THE REST
20.0 10.0 0.0010 0.0100 0.0100 0.0100 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.000	10.0								
20.0 10.0 0.0010 0.0100 0.1000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000000	30.0 -				+				B
20.0 10.0 0.0010 0.0100 0.1000 0.1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000000									
10.0 0.0010 0.0100 0.0010 0.0100 0.1000 1.000 1.000 1.000 10.00	20.0 -								138 1 4.0
0.0 0.0010 0.0100 0.1000 1.000 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 17.48 0.0659 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.									
0.0010 0.0100 0.1000 1.000 1.000 10.	10.0 ~								,2.0
O.0010	nn -								0.0
No.		010		0.0100			1.000		
3.541 100.00 17.48 0.0859 0.90 0.90 3.500 32.52 11.90 0.0723 0.00 0.00 3.625 70.62 5.97 0.0508 0.00 0.00 3.270 54.28 6.54 0.0450 0.00 0.00 3.270 54.28 6.54 0.0450 0.00 0.00 3.313 41.65 5.73 0.0364 9.00 0.00 3.645 35.92 5.30 0.0255 0.00 0.00 3.635 30.62 4.78 0.0215 0.50 0.00 3.375 25.84 4.20 0.0181 0.00 0.00 3.9723 18.01 3.12 0.0152 0.00 0.00 9.8176 14.89 2.63 0.0050 0.00 0.00 0.6781 9.84 2.12 0.0076 0.00 0.00 0.43831 7.72 1.92 0.0064 0.00 0.00 0.2891 2.26 1.47 0.0054 0.00 0.00 0.2891<				- Recurrence					
5.500 \$2.52 \$11.90 \$0.0723 \$0.00 \$0.00 \$1.625 \$70.62 \$8.97 \$0.000 \$0.00 \$3.270 \$54.28 \$6.54 \$0.0430 \$0.00 \$0.00 \$2.750' \$4.74 \$6.09 \$0.0361 \$0.00 \$0.00 \$2.313 \$41.65 \$5.73 \$0.0364 \$0.00 \$0.00 \$1.645 \$3.692 \$5.30 \$0.0255 \$0.00 \$0.00 \$1.635 \$30.62 \$4.78 \$0.0215 \$0.50 \$0.00 \$1.375 \$25.84 \$4.20 \$0.0181 \$0.00 \$0.00 \$1.156 \$21.64 \$3.63 \$0.0128 \$0.00 \$0.00 \$0.8737 \$18.01 \$3.12 \$0.0128 \$0.00 \$0.00 \$0.6875 \$12.20 \$2.36 \$0.0050 \$0.00 \$0.00 \$0.4331 \$7.72 \$1.52 \$0.0064 \$0.00 \$0.00 \$0.2891 \$2.26 \$1.47 \$0.0045 \$0.00 \$0.00 \$0.2444 \$0.00 \$0.00 \$0.00 \$0.00						SIZE %	PASS %CHAN	SIZE 9	FASS %CHAN
3.889 61.65 7.37 C.0511 0.00 0.00 3.270 54.28 6.54 C.0430 0.00 0.00 2.750' 47.74 6.09 0.0364 0.00 0.00 1.845 35.92 5.30 0.0255 0.00 0.00 1.875 25.84 4.20 0.0181 0.00 0.00 1.156 21.64 3.63 0.0152 0.00 0.00 0.8723 18.01 3.12 0.0128 0.00 0.00 0.8875 12.20 2.36 0.0076 0.00 0.00 0.4381 7.72 1.92 0.0076 0.00 0.00 0.4388 5.80 1.76 0.0054 0.00 0.00 0.2891 2.26 1.47 0.0045 0.00 0.00 0.2431 0.79 0.79 0.00 0.00 0.1445 0.00 0.00 0.00 0.1445 0.00 0.00 0.00 0.1445 0.00 0.00 0.1445 0.00	5.500	32.52	11.90	0.0723	0.00 0.00				
3.270 54.28 6.54 0.04\$0 0.00 0.00 2.750 47.74 6.09 0.0364 0.00 0.00 2.313 41.65 5.73 0.0364 9.00 0.00 1.645 35.92 5.30 0.0255 0.00 0.00 1.375 25.94 4.20 0.0181 0.00 0.00 1.156 21.64 3.63 0.0152 0.00 0.00 0.9723 18.01 3.12 0.0128 0.00 0.00 0.8676 14.39 2.69 0.0107 0.00 0.00 0.6875 12.20 2.36 0.0050 0.00 0.00 0.68781 9.84 2.12 0.0076 0.00 0.00 0.4381 7.72 1.92 0.0064 0.00 0.00 0.24988 5.80 1.76 0.0045 0.00 0.00 0.24931 0.79 0.79 0.00 0.00 0.1445 0.00 0.00 0.00 0.1445 0.00 0.00 0.00 0.1425 0.00 0.00 0.00	l.625 l.889	70.62 61.65	8.97 7.37	0.0508					
2.313 41.65 5.73 0.0364 0.00 0.00 1.545 35.92 5.30 0.0255 0.00 0.00 1.635 30.62 4.78 0.0181 0.00 0.00 1.155 25.84 4.20 0.0181 0.00 0.00 0.9723 18.01 3.12 0.0128 0.00 0.00 0.8876 14.89 2.69 0.0107 0.00 0.00 0.6875 12.20 2.36 0.0050 0.00 0.00 0.4331 7.72 1.92 0.0064 0.00 0.00 0.4388 5.80 1.76 0.0054 0.00 0.00 0.2891 2.26 1.47 0.0045 0.00 0.00 0.2891 2.26 1.47 0.0038 0.00 0.00 0.1445 0.00 0.00 0.00 0.1445 0.00 0.00 0.00 0.1216 0.00 0.00 0.00	3.270	54.28	6.54	0.0430	0.00 0.00				
1.376	2.750	41.65	5.73	0.0361					
1.376	249	35.92	5.30	0.0255	0.00				e fair in the
1.156 21.64 3.63 0.0152 0.00 0.00 0.9723 18.01 3.12 0.0128 0.00 0.00 0.8176 14.89 2.69 0.0107 0.00 0.00 0.6875 12.20 2.36 0.0090 0.00 0.00 0.4851 7.72 1.92 0.0064 0.00 0.00 0.4988 5.80 1.76 0.0054 0.00 0.00 0.2891 2.26 1.47 0.0045 0.00 0.00 0.2431 0.79 0.79 0.2044 0.00 0.00 0.11719 0.00 0.00 0.1215 0.00 0.00	222	25.84			0.00 0.00				
0.8176 14.89 2.69 0.0107 0.00 0.00 0.6875 12.20 2.36 0.0090 0.00 0.00 0.6781 9.84 2.12 0.0076 0.00 0.00 0.4381 7.72 1.92 0.0064 0.00 0.00 0.4088 5.80 1.76 0.0054 0.00 0.00 0.2891 2.26 1.47 0.0045 0.00 0.00 0.2431 0.79 0.79 0.00 0.00 0.1719 0.00 0.00 0.00 0.1445 0.00 0.00 0.1215 0.00 0.00	.635 .375		2 62	0.0152	0.00 0.00				
0.6875 12.20 2.35 0.0050 0.00 0.6781 9.84 2.12 0.0076 0.00 0.00 0.4831 7.72 1.92 0.0064 0.00 0.00 0.4088 5.80 1.76 0.0054 0.00 0.00 0.2891 2.26 1.47 0.0045 0.00 0.00 0.2431 0.79 0.79 0.2044 0.00 0.00 0.1719 0.00 0.00 0.1445 0.00 0.00 0.1215 0.00 0.00	.375 .1 5 6	21.64	2.63	0.0400	0.00				
0.4088	1.375 1.1 5 6 1.9723	18.01	3.12	0.0128	0.00				
0.4088	1.375 1.156 1.9723 1.8176 1.6875	18.01 14.89 12.20	3.12 2.69 2.36	0.0128 0.0107 0.0090	0.00 0.00 0.00 0.00 0.00 0.00				
0.2891	1.375 1.156 1.9723 1.8176 1.6875 1.6781 1.4331	18.01 14.89 12.20 9.84 7.72	3.12 2.69 2.36 2.12 1.92	0.0128 0.0107 0.0090 0.0076 0.0064	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
0.2044	1.375 1.156 0.9723 0.8176 0.6875 0.5781 0.4331	18.01 14.89 12.20 9.84 7.72 5.80	3.12 2.69 2.36 2.12 1.92 1.76	0.0128 0.0107 0.0030 0.0076 0.0064 0.0054	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
0.1719 0.00 0.00 0.1445 0.00 0.00 0.1216 0.00 0.00	1.375 1.156 1.9723 1.8176 1.6875 1.6781 1.4381 1.4088 1.3437 1.2891	18.01 14.89 12.20 9.84 7.72 5.80 4.04 2.26	3.12 2.69 2.36 2.12 1.92 1.76 1.73	0.0128 0.0107 0.0030 0.0076 0.0064 0.0054 0.0045	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
0.1216 0.00 0.00	1.375 1.156 1.9723 1.8176 1.6875 1.6781 1.4088 1.3407 1.2491	18.01 14.89 12.20 9.84 7.72 5.80 4.04 2.26 0.79	3.12 2.69 2.36 2.12 1.92 1.76 1.73 1.47 0.79	0.0128 0.0107 0.0030 0.0076 0.0064 0.0054 0.0045	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
0.1022 0.00 0.00	1.375 1.156 1.9723 1.8176 1.6875 1.6781 1.4088 1.3407 1.2891 1.2431 1.2044 1.1719	18.01 14.89 12.20 9.84 7.72 5.80 4.04 2.26 0.79 0.00	3.12 2.69 2.36 2.12 1.92 1.76 1.73 1.47 0.79 0.00	0.0128 0.0107 0.0030 0.0076 0.0064 0.0054 0.0045	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
	1.375 1.156 1.9723 1.8176 1.6875 1.6781 1.4088 1.3437 1.2891 1.2431 1.2044 1.1719	18.01 14.89 12.20 9.84 7.72 5.80 4.04 2.26 0.79 0.00 0.00	3.12 2.69 2.36 2.12 1.92 1.76 1.73 1.47 0.79 0.00 0.00	0.0128 0.0107 0.0030 0.0076 0.0064 0.0054 0.0045	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
하는 그 등 그는 바라마다 가입니다. 하는 하는 하는데 되었다. 이 사람들은 살이 하나라는 사람들이 되었다. 하는데 하다는데 하다는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하	1.375 1.156 1.9723 1.8176 1.6875 1.6781 1.4088 1.3437 1.2891 1.2431 1.2044 1.1719 1.1445	18.01 14.89 12.20 9.84 7.72 5.80 4.04 2.26 0.79 0.00 0.00 0.00	3.12 2.69 2.36 2.12 1.92 1.76 1.73 1.47 0.79 0.00 0.00 0.00	0.0128 0.0107 0.0030 0.0076 0.0064 0.0054 0.0045	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
	1.375 1.156 1.9723 1.8176 1.6875 1.6781 1.4088 1.3437 1.2891 1.2431 1.2044 1.1719 1.1445	18.01 14.89 12.20 9.84 7.72 5.80 4.04 2.26 0.79 0.00 0.00 0.00	3.12 2.69 2.36 2.12 1.92 1.76 1.73 1.47 0.79 0.00 0.00 0.00	0.0128 0.0107 0.0030 0.0076 0.0064 0.0054 0.0045	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				

	<u>P</u>	article S	lize Anai	lysis			Dupli	cate Sa	-005 mple		-60 Date: Time:	16:00	Meas # Pres #:	N/A
							mv = mn = ma = cs =	mary 4.679 2.308 4.060 1.478 1.343	20% 30% 40%	= 3.500 = 4.126 = 4.621	<u>siles</u> 60% = 5.31 70% = 5.53 80% = 5.85 90% = 6.13 95% = 6.30	7	Vol% 100%	Width 2.686
%PAS	S	Lot Marie and	- 14 400								Charles and		0/	CHAI
100.0					TT	ПП		TT	TT	ППП		TIII	ittir	50.0
90.0					+									45.0
80.0								<u> </u>	- - -					40.0
70.0			+++++	-1									2	35.0
60.0					++				++					30.0
50.0									+					25.0
40.0			-		-				- - -					20.0
30.0 -			Hill		44.		11		- - -					15.0
20.0 -												/		10.0
10.0 -					+				+					5.0
0.0 -				44	+	-		4						0.0
	0010		0.0100		- Siz	0.1 e (m	000 icrons) -		1.000)		10.00	
75 541 500 625 889 276 313 645 635 635 676 676 6876 6876 6876 6881 6	%PASS 100.00 66.27 40.10 24.41 15.92 11.05 7.83 5.44 3.48 1.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	%CHAN 33.73 26.17 15.69 8.49 4.87 3.22 2.42 1.93 1.54 1.28 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.0	SIZE 0.0859 0.0723 0.0608 0.0511 0.0430 0.0361 0.0364 0.0255 0.0181 0.0152 0.0128 0.0128 0.0107 0.0090 0.0064 0.0045 0.0045	%PASS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	%C} 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		SIZE	<u>%</u> E	<u>A\$8</u>	<u>%CHAI</u>	N SIZE	%/PAS	<u>33</u> %	<u>SCHAN</u>

3.14	1 ta v 6	Particle	Size Ana	alysis		CUF AW-101 Duplicate Sa	-005 AW-101-f5	Date: 04	/09/99 Meas #: :02 Pres #:	0014
	LAGE				Marie Portonia de la composición del composición de la composición del composición de la composición del composición	Summary mv = 3.508 mn = .3239 ma = 1.742	Percenti 10% = .7389 6 20% = 1.444 7 30% = 2.250 8 40% = 3.138 9	es 0% = 4.561 0% = 5.122 0% = 5.588 0% = 5.987	Dia Vol% 3.921 100%	Width 4.58
%PA:									%	CHA
100.0				· - T	THITI		T TEEET	TT		50,0
90.0									. 	
								T	· - # + +	45.0
0.08	+							2-6		40.0
										40.0
70.0					- 		+++++		/ :	35.0
60.0										00,0
70.5							+		 / - - -	30.0
50.0	+								/	
								7	1 1 1 1 1 1 1	25.0
40.0	+						1-1-1-1-1			20.0
										20.0
30.0			11111	-+	++++ 		+++++			15.0
20.0										
20.0	77"	- 17			+++++++		<u> </u>		1	0.0
10.0								5 2		
								(1000) (1000) (1000) (1000) (1000)	1	5.0
0.0	++				+++++	- 3 19				^ ^
0.	0010		0.0100)	0.10		1.000	DE SPECIAL DE LA COMPANIA DE LA COMP	10.00	0.0
ZE	0/ DASS	0/ CLIAN	10/75		- Size (mic			SI V		
541	%PASS 100.00	%CHAN 22.22	SIZE 0.0859	%PASS 0.00	%CHAN S	SIZE %PA	SS %CHAN	SIZE	%PASS %C	HAN
500 525	77.78 61.08	16.70 11.54	0.0723	0.00	0.00					
389	49.54	7.98	0.0608	0.00	0.00					
70 750	41.58 35.60	5.9S 4.89	0.0430 0.0361	0.00	0.00					
13	30.71	4.29	0.0304	0.00	0.00					
45 35	26.42 22.55	3.87 3.50	0.0255 0.0215	0.00	0.00				a 9	
75	19.05	3.13	0.0181	0.00	0.00					
58 723	15.92 13.28	2.64 2.15	0.0152 0.0128	0.00	0.00 0.00			Y I.e		
176 875	11.13	1.89	0.0107	0.00	0.00					
781	9.24 7.55	1.69 1.58	0.0090	0.00	0.00					
861 088	5,97 4,61	1.46	0.0064	0.00	90.0					
V100	3.20	1.31 1.12	0.0054	0.00 0.00	0.00 0.00		200			- 10
437	0.00	0.91	0.0038	0.00	0.00					
437 891	2.08		,							
437 891 431 044	1.17 0.45	0.71 0.36			1					
437 891 431 044 719	1.17 0.46 0.10	0.36 0.10								
437 891 431 044	1.17 0.45	0.36								

	F	Parti	icle	: Si	ze	A	nalys	sis	(\$7.4) 	(8) (:			CUI	AV	N-10	1-00	5				Time			Pre	es #:	N/A N/A
mulant Sup	pernatant												mn ma cs	= 2	ary 4.032 .4627 2.102 2.850 2.317	2 3 4	0% : 0% :	= .8 = 1. = 3. = 4.	162 748 058 012	60% 70% 80% 90% 95%	= 5. = 5. = 5. = 6.	538 828 125	<u>Dia</u> 4.82 .432	0	01% 94% 6%	Width 4.079 .2121
%PASS	}								777																. %	CHA
100.0					П	11	1.0		1		T	Ш	7				T	H					Π	1	III	50.0
90.0	30.00		3.1	-1	11	11			<u>.</u>								-	+	14		-	+	-		+++	45:0
70 m							. 3																		Щ	40.0
80.0							u vi													. A						40.0
70.0	. /.										1													H	$\dagger \dagger$	35.0
60.0 -						4								-			-	4					44		╫	30.0
		li I													• ^								$\downarrow I$			25.0
5 0.0																							I		1	
40.0 -				-											<u></u>								1			20.0
30.0 -						\parallel					+				*:	;						1			#	15.0
20.0																					1					10.0
20.0 -	4.7 (1.7.7)	1.33											3										7.0			
10.0 -		†				1												1			- F		200			5.0
0.0									4	1	-	#		4			4		11	T	200			1,1	#	0.0
	010					0.0	0100				(). ().	1.1	1000						1.0	000					10.0)()
SiZE	%PAS		64 C I	HAN	1	SIZE		%P/	188			e (I	nicro			%PA	SS	•	%Cł	IAH	SIZ	Έ	%	PAS	S	%CHAI
5.541 5.500 4.625 3.889 3.270 2.750 2.313 1.545 1.635 1.375 1.159 0.8176 0.6876 0.6781 0.4861 0.4088 0.3437 0.2891 0.2431 0.2044	100.00 68.71 49.54 38.40 31.84 27.54 24.30 21.56 19.06 16.68 14.38 12.15 10.02 8.03 6.12 4.19 2.59 1.40 0.64 0.00		31.1 19.1 11.6.5 4.3 3.2 2.7 2.3 2.3 2.2 2.1 1.9 1.9 1.9 0.0 0.0	17 114 16 16 16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19		0.01 0.01 0.01 0.01 0.01 0.01 0.01	723 508 511 430 561 204 255 215 181 152 128 107 006 006 4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	000000000000000000000000000000000000000		0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	000000000000000000000000000000000000000														**************************************

	Par	ticle Siz	e Analy	sis	24/11 24/2		W-101 cate Sa		Perc		Date: 04/ Time: 15		Meas #: Pres #: Vol%	N/A
A 15110	60 D	T				mv = mn = ma = cs =	2.826	20% 30% 40%	= .192 = .208 = .224 = .241	5 60% 4 70% 5 80% 3 90%	= .2817 = .3132 = .3677 = .4833 = .6338	.2597		
NUMB %PASS		TRIBUTE	2			<u> </u>		<u> </u>				der den	%	CHAN 50.0
100.0		TIT								+				
90.0			+++			<u> </u>		1						45.0
80.0	<u> </u>						-		-					40.0
70.0				-				H	- - -	<u> </u>		_ - -		35.0
e e e												_ _ _		30.0
60.0								i						
50.0														25.0
40.0														20.0
30.0							\mathbb{R}	FR		-				15.0
20.0 -						-		-65		-				10.0
								_ 12.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		<u> </u>		_	++++	5.0
10.0										4 . ·				0.0
0.0	0010	+	0.0100		0.	1900			1	.000			10.0	
5:25	2/ DADS	O/ OLIAN!	Teize	92 24 989	- Size (r %CHAN	nicron		APAS	5 %	CHAN	SIZE	%P	ASS	%CHAN
SIZE 6.541 6.500 4.625 3.889 3.270 2.750 2.313 1.545 1.375 0.9723 0.8176 0.6876 0.6876 0.4083 0.3437 0.2441 0.2444 0.1215 0.1215 0.1022	%PASS 100.00 99.99 39.38 39.38 39.39 39.39 39.54 99.28 97.37 95.93 97.37 95.93 93.68 90.15 84.69 76.34 62.88 41.03 17.47 0.00 0.00 0.00	0.01 0.01 0.02 0.03 0.04 0.07 0.17 0.26 0.39 0.60 0.92 1.44 2.25 3.53 5.48 8.35 13.46 21.85 23.66 17.47 0.00 0.00	SIZE 0.0859 0.0723 0.0608 0.0511 0.0430 0.0361 0.0255 0.0215 0.0181 0.0152 0.0128 0.0107 0.0090 0.0064 0.0054 0.0054 0.0038	%PASS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5:24								

	Pai	rticle Siz	e Analy	sis	de la se	CUF AV	ite Sa				Date: 04/ Time: 15:	43	Meas #:	N/A
Numrs	of Nic	TK184T	10N			Summ: mv = 3 mn = . ma = 6 cs = 3 sd = .	3.416 5419 1.998 3.002	20% 30% 40%	= .3 = .3 = .3 = .3	312 70% 521 80% 792 90%	6 = .4545 6 = .5117 6 = .6017 6 = .8176 6 = 1.179	<u>Dia</u> .4127	Vol% 100%	<u>Width</u> .3340
%PASS		MCDAT	1010			l		-					9/	CHAN
100.0						Γ	1						TIII	50.0
90:0	La :		1 1 2 2 2 3					-					++++	45.0
80.0	2 - 1 1 2			-					/				++	40.0
70.0			 					_	/-		_		╫	35.0
30.0 -								4	-				+ + +	30.0
50.0 -														25.0
10.0 -								4						20.0
30.0 -								Ш						15.0
20.0 -									111					10.0
									ALC: N					5.0
10.0 -									100 A	W CL	5 m			0.0
0.0 0.0	010		0.0100			1000		-1	177	1.000			10.0	
iZE	%PASS	%CHAN	SIZE	%PASS	- Size (n %CHAN			PASS	3	6CHAN	SIZE	%P/	ASS	%CHAN
.541 .500 .625 .889 .270 .760 .313 .945 .635 .375 .156 .9723 .8176 .6875 .5781 .4861 .4088 .3437 .2891 .2401 .2401 .2401	100.00 99.93 99.83 99.87 99.43 99.09 98.62 98.01 97.23 98.21 94.83 92.88 90.01 85.83 77.90 86.03 48.98 26.49 0.60 0.60 0.60 0.60 0.60 0.60 0.60	0.07 0.10 0.16 0.24 0.34 0.47 0.61 0.73 1.02 1.38 1.95 2.87 4.38 7.73 11.87 17.05 22.49 29.49 0.00 0.00 0.00 0.00 0.00 0.00	0.0859 0.0723 0.0508 0.0511 0.0420 0.0361 0.0364 0.0255 0.0215 0.0181 0.0152 0.0128 0.0107 0.0090 0.0076 0.0064 0.0064 0.0028	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0									

Đ

Particle Size Analysis	CUF AW-10 Duplicate S		Date: 04/09/9 Time: 15:43	99 Meas #: 00145 Pres #: 01
AVERAGE VOLUME DISTRIBUTION	Summary mv = 3.041 mn = .3391 ma = 1.364 cs = 4.399 sd = 2.361	Percentile 10% = .5257 60 20% = .9572 70 30% = 1.519 80 40% = 2.170 90	% = 3.624 2.8 % = 4.407 % = 5.209 % = 5.828	ia Vol% Width 873 100% 4.721
%PASS 100.0				%CHAN
90.0	The second second			18.0
80.0				16.0
70.0			_ - /-	14.0
so.0				12.0
50.0				
				10.0
40.0				8.0
30.0	+	+++++		6.0
20.0				4.0
16.0				2.0
0.0				
0.0010 0.0100	.1000	1.000		10.00
IZE %PASS %CHAN SIZE %PASS %CHAN	microns) -	PASS %CHAN	SIZE %	PASS %CHAN
.541 100.00 15.82 0.0859 0.00 0.00 .500 84.18 11.44 0.0723 0.00 0.00 .625 72.74 9.34 0.0608 0.90 0.00 .889 93.40 8.03 0.0511 0.90 0.00 .270 55.37 7.07 0.0430 0.00 0.00 .750 48.30 6.22 0.0361 0.90 0.00 .313 42.08 6.44 0.0304 0.90 0.00 .546 36.54 4.73 0.0255 0.90 0.00 .635 31.36 4.25 0.0215 0.00 0.00 .375 27.61 3.83 0.0181 0.00 0.00 .9723 20.30 3.18 0.0152 0.00 0.00 .8176 17.12 2.93 0.0107 0.00 0.00 .6781 11.42 2.53 0.0076 0.00 0.00 .4088				

Distribution

No. of Copies Copies

OFFSITE ONSITE

2 DOE/Office of Scientific and Technical Information

6 British Nuclear Fuels, Limited
M. A. Johnson (4) N1-87
W. L. Roberson S5-02
Project Document Control (1)

20 Pacific Northwest National Laboratory P. R. Bredt P7-25 K. P. Brooks (5) K6-24 G. R. Golcar K6-24 R. T. Hallen K2-12 K5-12 S. A. Hartley L. K. Jagoda K6-24 D. E. Kurath (2) P7-28 E. V. Morrey P7-28 K. G. Rappe K6-28 J. M. Tingey P7-25 M. W. Urie P7-22 Technical Report Files (5)